Menu Close

sin-pi-7-cos-pi-14-tan-3pi-14-2cos-pi-7-1-




Question Number 135604 by liberty last updated on 14/Mar/21
 ((sin (π/7).cos (π/14))/(tan (3π/14)(2cos (π/7)−1))) =?
sin(π/7).cos(π/14)tan(3π/14)(2cos(π/7)1)=?
Answered by EDWIN88 last updated on 14/Mar/21
 Remark  { ((sin 3x=3sin x−4sin^3 x)),((cos 3x=4cos^3 x−3cos x)) :}  let x = (π/(14)) ⇒((sin (π/7)cos (π/14))/(tan (3π/14)(2cos (π/7)−1)))   = ((sin 2x cos x)/(tan 3x (2cos 2x−1))) = ((2sin x cos^2 x cos 3x)/(sin 3x(4cos^2  x−3) ))  = ((2sin x cos^2 x (4cos^3 x−3cos x))/((3sin x−4sin^3 x)(4cos^2 x−3)))  = ((2cos^3 x (4cos^2 x−3))/((3−4sin^2 x)(4cos^2 x−3)))  = ((2cos^3 x)/(4cos^2 x−1))  according cos 2x = cos (π/7) = Q is one  of the roots of 8Q^3 −4Q^2 −4Q+1 = 0  therefore 8(1+Q)^3  = 7(1+2Q)^2   (7/8) = (((1+cos 2x)^3 )/((1+2cos 2x)^2 )) = (((2cos^2 x)^3 )/((4cos^2 x−1)^2 ))  (7/8)= ((8cos^6 x)/((4cos^2 x−1)^2 )) ; (7/(16)) = (((2cos^3 x)^2 )/((4cos^2 x−1)^2 ))  ∴ ((2cos^3 x)/(4cos^2 x−1)) = ((√7)/4)
Remark{sin3x=3sinx4sin3xcos3x=4cos3x3cosxletx=π14sin(π/7)cos(π/14)tan(3π/14)(2cos(π/7)1)=sin2xcosxtan3x(2cos2x1)=2sinxcos2xcos3xsin3x(4cos2x3)=2sinxcos2x(4cos3x3cosx)(3sinx4sin3x)(4cos2x3)=2cos3x(4cos2x3)(34sin2x)(4cos2x3)=2cos3x4cos2x1accordingcos2x=cos(π/7)=Qisoneoftherootsof8Q34Q24Q+1=0therefore8(1+Q)3=7(1+2Q)278=(1+cos2x)3(1+2cos2x)2=(2cos2x)3(4cos2x1)278=8cos6x(4cos2x1)2;716=(2cos3x)2(4cos2x1)22cos3x4cos2x1=74

Leave a Reply

Your email address will not be published. Required fields are marked *