sin-pi-7-cos-pi-14-tan-3pi-14-2cos-pi-7-1- Tinku Tara June 3, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 135604 by liberty last updated on 14/Mar/21 sin(π/7).cos(π/14)tan(3π/14)(2cos(π/7)−1)=? Answered by EDWIN88 last updated on 14/Mar/21 Remark{sin3x=3sinx−4sin3xcos3x=4cos3x−3cosxletx=π14⇒sin(π/7)cos(π/14)tan(3π/14)(2cos(π/7)−1)=sin2xcosxtan3x(2cos2x−1)=2sinxcos2xcos3xsin3x(4cos2x−3)=2sinxcos2x(4cos3x−3cosx)(3sinx−4sin3x)(4cos2x−3)=2cos3x(4cos2x−3)(3−4sin2x)(4cos2x−3)=2cos3x4cos2x−1accordingcos2x=cos(π/7)=Qisoneoftherootsof8Q3−4Q2−4Q+1=0therefore8(1+Q)3=7(1+2Q)278=(1+cos2x)3(1+2cos2x)2=(2cos2x)3(4cos2x−1)278=8cos6x(4cos2x−1)2;716=(2cos3x)2(4cos2x−1)2∴2cos3x4cos2x−1=74 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: cos-2pi-17-cos-4pi-17-cos-8pi-17-cos-16pi-17-Next Next post: Lets-say-we-have-three-points-A-0-0-B-x-y-C-x-y-Assuming-that-both-B-and-C-are-point-on-a-fuction-y-f-x-we-can-calculate-the-area-under-the-point-where-it-makes-a-right-triangle-with-the-o Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.