Menu Close

sin-x-ln-tan-x-dx-x-n-ln-x-dx-n-1-x-2-x-2-2-dx-x-sin-2x-dx-




Question Number 5487 by love math last updated on 16/May/16
∫sin x ln (tan x) dx    ∫x^n ln x dx         (n≠−1)    ∫(x^2 /( (√(x^2 −2))))dx    ∫x sin 2x dx
$$\int{sin}\:{x}\:{ln}\:\left({tan}\:{x}\right)\:{dx} \\ $$$$ \\ $$$$\int{x}^{{n}} {ln}\:{x}\:{dx}\:\:\:\:\:\:\:\:\:\left({n}\neq−\mathrm{1}\right) \\ $$$$ \\ $$$$\int\frac{{x}^{\mathrm{2}} }{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{2}}}{dx} \\ $$$$ \\ $$$$\int{x}\:{sin}\:\mathrm{2}{x}\:{dx} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Answered by nchejane last updated on 16/May/16
1.∫sinx ln(tanx)dx  =−cosxln(tanx) +∫cos x ((sec x)/(tan x))dx  =−cos x ln(tan x)+∫((cos x)/(sin x))dx  =−cos x ln(tan x)+ln(sin x)+c    2.∫x^n ln xdx=(x^(n+1) /(n+1))lnx−(1/(n+1))∫x^(n+1) (1/x)dx  =(x^(n+1) /(n+1))lnx−(1/(n+1))×(x^(n+1) /(n+1))+k (n≠−1)    3.∫(x^2 /( (√(x^2 −2))))dx=(√2)∫sec^3 u tanu(1/( (√(2(sec^2 u−1)))))du (let x=sec u=>dx=sec u tan u du)  =∫sec^3  u  du=...      4.∫x sin 2xdx=−(x/2)cos 2x+(1/2)∫cos 2x dx  =−(x/2)cos 2x+((sin 2x)/4)+k
$$\mathrm{1}.\int\mathrm{sin}{x}\:{ln}\left({tanx}\right){dx} \\ $$$$=−{cosxln}\left({tanx}\right)\:+\int{cos}\:{x}\:\frac{{sec}\:{x}}{{tan}\:{x}}{dx} \\ $$$$=−{cos}\:{x}\:{ln}\left({tan}\:{x}\right)+\int\frac{{cos}\:{x}}{{sin}\:{x}}{dx} \\ $$$$=−{cos}\:{x}\:{ln}\left({tan}\:{x}\right)+{ln}\left({sin}\:{x}\right)+{c} \\ $$$$ \\ $$$$\mathrm{2}.\int{x}^{{n}} {ln}\:{xdx}=\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}{lnx}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\int{x}^{{n}+\mathrm{1}} \frac{\mathrm{1}}{{x}}{dx} \\ $$$$=\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}{lnx}−\frac{\mathrm{1}}{{n}+\mathrm{1}}×\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}+{k}\:\left({n}\neq−\mathrm{1}\right) \\ $$$$ \\ $$$$\mathrm{3}.\int\frac{{x}^{\mathrm{2}} }{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{2}}}{dx}=\sqrt{\mathrm{2}}\int{sec}^{\mathrm{3}} {u}\:{tanu}\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}\left({sec}^{\mathrm{2}} {u}−\mathrm{1}\right)}}{du}\:\left({let}\:{x}={sec}\:{u}=>{dx}={sec}\:{u}\:{tan}\:{u}\:{du}\right) \\ $$$$=\int{sec}^{\mathrm{3}} \:{u}\:\:{du}=… \\ $$$$ \\ $$$$ \\ $$$$\mathrm{4}.\int{x}\:{sin}\:\mathrm{2}{xdx}=−\frac{{x}}{\mathrm{2}}{cos}\:\mathrm{2}{x}+\frac{\mathrm{1}}{\mathrm{2}}\int{cos}\:\mathrm{2}{x}\:{dx} \\ $$$$=−\frac{{x}}{\mathrm{2}}{cos}\:\mathrm{2}{x}+\frac{{sin}\:\mathrm{2}{x}}{\mathrm{4}}+{k} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *