Menu Close

sin-Z-100-find-z-




Question Number 6908 by Tawakalitu. last updated on 02/Aug/16
sin(Z) = 100    find z
sin(Z)=100findz
Commented by Rasheed Soomro last updated on 02/Aug/16
Always  −1≤sin(z)≤1  ∀z∈R  ,so  sin(z) = 100 is not possible.  In other words no real solution.
Always1sin(z)1zR,sosin(z)=100isnotpossible.Inotherwordsnorealsolution.
Answered by sandy_suhendra last updated on 02/Aug/16
Z is a complex number = x+iy  sin (Z) = sin (x+iy)         100  = sin x.cosh y + i cos x.sinh y  100 + 0.i  = sin x.cosh y + i cos x.sinh y  So ⇒(1)    cos x.sinh y = 0  we get, cos x = 0 ⇒ x = (π/2)+k.2π  and sin x = ±1  or sinh y = 0 ⇒y=0, this is not solution because (x+iy) becomes real  and ⇒(2)   sin x.cosh y = 100, substitute sin x =±1                                        cosh y = ± 100 ⇒ y = ± arc cosh 100    Substitute x and y to Z = x + iy                                                      = ((π/2)+k.2π) ± i arc cosh 100
Zisacomplexnumber=x+iysin(Z)=sin(x+iy)100=sinx.coshy+icosx.sinhy100+0.i=sinx.coshy+icosx.sinhySo(1)cosx.sinhy=0weget,cosx=0x=π2+k.2πandsinx=±1orsinhy=0y=0,thisisnotsolutionbecause(x+iy)becomesrealand(2)sinx.coshy=100,substitutesinx=±1coshy=±100y=±arccosh100SubstitutexandytoZ=x+iy=(π2+k.2π)±iarccosh100
Commented by Tawakalitu. last updated on 02/Aug/16
Wow ... Thanks for your help
WowThanksforyourhelp
Commented by Yozzii last updated on 03/Aug/16
If y∈R, coshy≥1>0⇒∄y∈R for coshy=−100.  In fact, sin((π/2)+2kπ)=sin(π/2)=1 for all k∈Z  due to periodicity of sinusoidal function.
IfyR,coshy1>0yRforcoshy=100.Infact,sin(π2+2kπ)=sinπ2=1forallkZduetoperiodicityofsinusoidalfunction.

Leave a Reply

Your email address will not be published. Required fields are marked *