Menu Close

sin1-sin2-2-sin3-3-sin4-4-1-2-




Question Number 134439 by Dwaipayan Shikari last updated on 03/Mar/21
sin1βˆ’((sin2)/2)+((sin3)/3)βˆ’((sin4)/4)+...=(1/2)
$${sin}\mathrm{1}βˆ’\frac{{sin}\mathrm{2}}{\mathrm{2}}+\frac{{sin}\mathrm{3}}{\mathrm{3}}βˆ’\frac{{sin}\mathrm{4}}{\mathrm{4}}+…=\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Answered by mnjuly1970 last updated on 03/Mar/21
   𝛀=Ξ£_(n=1) ^∞ (((βˆ’1)^(nβˆ’1) sin(nx))/n)=     =imΞ£_(n=1) ^∞ (((βˆ’1)^(nβˆ’1) (e^(ix) )^n )/n)=im(ln(1+e^(ix) ))     =_(z=x+iy) ^(ln(z))  ln((√(x^2 +y^2 )))+itan^(βˆ’1) ((y/x))      =im(ln(√((1+cos(x))^2 +sin^2 (x) )) +itan^(βˆ’1) (((sin(x))/(1+cos(x)))=tan((x/2)))  =(x/2)  x:=1     Ξ£_(n=1) ^∞ (βˆ’1)^(nβˆ’1) ((sin(n))/n)=(1/2) ...βœ“βœ“
$$\:\:\:\boldsymbol{\Omega}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(βˆ’\mathrm{1}\right)^{{n}βˆ’\mathrm{1}} {sin}\left({nx}\right)}{{n}}=\:\:\: \\ $$$$={im}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(βˆ’\mathrm{1}\right)^{{n}βˆ’\mathrm{1}} \left({e}^{{ix}} \right)^{{n}} }{{n}}={im}\left({ln}\left(\mathrm{1}+{e}^{{ix}} \right)\right) \\ $$$$\:\:\:\underset{{z}={x}+{iy}} {\overset{{ln}\left({z}\right)} {=}}\:{ln}\left(\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)+{itan}^{βˆ’\mathrm{1}} \left(\frac{{y}}{{x}}\right) \\ $$$$\:\:\:\:={im}\left({ln}\sqrt{\left(\mathrm{1}+{cos}\left({x}\right)\right)^{\mathrm{2}} +{sin}^{\mathrm{2}} \left({x}\right)\:}\:+{itan}^{βˆ’\mathrm{1}} \left(\frac{{sin}\left({x}\right)}{\mathrm{1}+{cos}\left({x}\right)}={tan}\left(\frac{{x}}{\mathrm{2}}\right)\right)\right. \\ $$$$=\frac{{x}}{\mathrm{2}} \\ $$$${x}:=\mathrm{1} \\ $$$$\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(βˆ’\mathrm{1}\right)^{{n}βˆ’\mathrm{1}} \frac{{sin}\left({n}\right)}{{n}}=\frac{\mathrm{1}}{\mathrm{2}}\:…\checkmark\checkmark \\ $$
Commented by Dwaipayan Shikari last updated on 03/Mar/21
Great sir! It is simple and nice.  (x/2)=sinxβˆ’((sin2x)/2)+((sin3x)/3)βˆ’((sin4x)/4)+...  (0<x<Ο€)  But ,Differentiating respect to x  (1/2)=cosxβˆ’cos2x+cos3xβˆ’cos4x+....   (Independent of x!)  Is it true?  If we take x=0  (1/2)=1βˆ’1+1βˆ’1+1βˆ’1+....   But 0<x<Ο€
$${Great}\:{sir}!\:{It}\:{is}\:{simple}\:{and}\:{nice}. \\ $$$$\frac{{x}}{\mathrm{2}}={sinx}βˆ’\frac{{sin}\mathrm{2}{x}}{\mathrm{2}}+\frac{{sin}\mathrm{3}{x}}{\mathrm{3}}βˆ’\frac{{sin}\mathrm{4}{x}}{\mathrm{4}}+…\:\:\left(\mathrm{0}<{x}<\pi\right) \\ $$$${But}\:,{Differentiating}\:{respect}\:{to}\:{x} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}={cosx}βˆ’{cos}\mathrm{2}{x}+{cos}\mathrm{3}{x}βˆ’{cos}\mathrm{4}{x}+….\:\:\:\left({Independent}\:{of}\:{x}!\right) \\ $$$${Is}\:{it}\:{true}? \\ $$$${If}\:{we}\:{take}\:{x}=\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{1}βˆ’\mathrm{1}+\mathrm{1}βˆ’\mathrm{1}+\mathrm{1}βˆ’\mathrm{1}+….\: \\ $$$${But}\:\mathrm{0}<{x}<\pi \\ $$
Commented by mnjuly1970 last updated on 03/Mar/21
peace be upon you     your effort really really admirable     i donβ€²t know how old are you  by the way your work is very    excellent ..with the best wishes        allah keep you....
$${peace}\:{be}\:{upon}\:{you}\: \\ $$$$\:\:{your}\:{effort}\:{really}\:{really}\:{admirable}\: \\ $$$$\:\:{i}\:{don}'{t}\:{know}\:{how}\:{old}\:{are}\:{you} \\ $$$${by}\:{the}\:{way}\:{your}\:{work}\:{is}\:{very} \\ $$$$\:\:{excellent}\:..{with}\:{the}\:{best}\:{wishes} \\ $$$$\:\:\:\:\:\:{allah}\:{keep}\:{you}…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *