Menu Close

sinx-1-sinx-sin2x-dx-




Question Number 66589 by Tanmay chaudhury last updated on 17/Aug/19
∫((sinx)/(1+sinx+sin2x))dx
sinx1+sinx+sin2xdx
Commented by MJS last updated on 17/Aug/19
Weierstrass [t=tan (x/2) → dx=((2dt)/(t^2 +1))] leads to  4∫(t/((t+1)(t^3 −3t^2 +5t+1)))dt  t^3 −3t^2 +5t+1=  =(t−α−β−1)(t^2 +(α+β−2)t+(α^2 +β^2 −αβ−α−β+1))  α=((−2−(2/9)(√(87))))^(1/3)   β=((−2+(2/9)(√(87))))^(1/3)   α+β+1=A  α+β−2=B  α^2 +β^2 −αβ−α−β+1=C  4∫(t/((t+1)(t−A)(t^2 +Bt+C)))dt=  =−(4/((A+1)(B−C−1)))∫(dt/(t+1))+       +((4A)/((A+1)(A^2 +AB+C)))∫(dt/(t−A))+       +(4/((A^2 +AB+C)(B−C−1)))∫(((A+C)t+(A+B−1)C)/(t^2 +Bt+C))dt  now solve these...  I found no easier path
Weierstrass[t=tanx2dx=2dtt2+1]leadsto4t(t+1)(t33t2+5t+1)dtt33t2+5t+1==(tαβ1)(t2+(α+β2)t+(α2+β2αβαβ+1))α=229873β=2+29873α+β+1=Aα+β2=Bα2+β2αβαβ+1=C4t(t+1)(tA)(t2+Bt+C)dt==4(A+1)(BC1)dtt+1++4A(A+1)(A2+AB+C)dttA++4(A2+AB+C)(BC1)(A+C)t+(A+B1)Ct2+Bt+CdtnowsolvetheseIfoundnoeasierpath
Commented by MJS last updated on 17/Aug/19
...corrected a mistake
correctedamistake
Commented by Tanmay chaudhury last updated on 17/Aug/19
excellent sir...i shall try to complete
excellentsirishalltrytocomplete
Commented by mathmax by abdo last updated on 18/Aug/19
let I =∫ ((sinx)/(1+sinx +sin(2x)))dx ⇒ I =∫  ((sinx)/(1+sinx +2sinx cosx))dx  changement tan((x/2))=t give   I =∫     (((2t)/(1+t^2 ))/(1+((2t)/(1+t^2 ))+2 ((2t)/(1+t^2 ))((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 )) =∫((4t)/((1+t^2 )^2 {1+((2t)/(1+t^2 )) +((4t(1−t^2 ))/((1+t^2 )^2 ))}))dt  =∫   ((4tdt)/((1+t^2 )^2  +2t(1+t^2 )+4t(1−t^2 ))) =∫  ((4tdt)/(t^4  +2t^2  +1+2t+2t^3  +4t−4t^3 ))  =∫  ((4tdt)/(t^4  −2t^3  +2t^2  +6t +1)) let decompose the fraction  F(t) =((4t)/(t^4 −2t^3  +2t^2  +6t +1))  t^4  −2t^3  +2t^2  +6t +1 =0  the roots are   t_1 =1,5898 +1,7445i (complex)  t_2 ∼1,5898−1,7445i (complex)  t_3 =−1  (real)  t_4 ∼−0,1795 (real)           ⇒ F(t)∼ ((4t)/((t−t_1 )(t−t_1 ^− )(t+1)(t−t_4 )))  =((4t)/((t^2 −2Re(t_1 )t  +∣t_1 ∣^2 )(t+1)(t−t_4 ))) =(a/(t+1)) +(b/(t−t_4 )) +((ct+d)/(t^2 −2Re(t_1 )t +∣t_1 ∣^2 ))  ⇒I =aln∣t+1∣+bln∣t−t_4 ∣  +∫   ((ct +d)/(t^2 −2Re(t_1 )t +∣t_1 ∣^2 ))  rest to calculate a,b,c and d....becontinued....
letI=sinx1+sinx+sin(2x)dxI=sinx1+sinx+2sinxcosxdxchangementtan(x2)=tgiveI=2t1+t21+2t1+t2+22t1+t21t21+t22dt1+t2=4t(1+t2)2{1+2t1+t2+4t(1t2)(1+t2)2}dt=4tdt(1+t2)2+2t(1+t2)+4t(1t2)=4tdtt4+2t2+1+2t+2t3+4t4t3=4tdtt42t3+2t2+6t+1letdecomposethefractionF(t)=4tt42t3+2t2+6t+1t42t3+2t2+6t+1=0therootsaret1=1,5898+1,7445i(complex)t21,58981,7445i(complex)t3=1(real)t40,1795(real)F(t)4t(tt1)(tt1)(t+1)(tt4)=4t(t22Re(t1)t+t12)(t+1)(tt4)=at+1+btt4+ct+dt22Re(t1)t+t12I=alnt+1+blntt4+ct+dt22Re(t1)t+t12resttocalculatea,b,candd.becontinued.
Commented by ~ À ® @ 237 ~ last updated on 18/Aug/19
Let named it F(x)   We  can explicit the denominator   1+sinx+sin(2x)= Im (1+e^(ix) +e^(i2x) )=Im(((e^(i3x) −1)/(e^(ix) −1)))=Im(((e^(i((3x)/2)) (e^(i((3x)/2)) −e^(−i((3x)/2)) ))/(e^(i(x/2)) (e^(i(x/2)) −e^(−i(x/2)) ))))=Im(((e^(ix) . sin(((3x)/2)))/(sin((x/2)))))=((sin(3((x/2))))/(sin((x/2)))) Im(e^(ix) )= (3−4sin^2 ((x/2))) sinx        using (sin3θ= 3sinθ −4sin^3 θ )  Now   F(x)= ∫ (( dx)/(3−4sin^2 ((x/2)))) = 2G(u)        avec  G(u)= ∫ (du/(3−4sin^2 u))   ( stating x=2u )  G(u)= ∫ ((1/(cos^2 u))/((3/(cos^2 u))−4tan^2 u)) du = ∫((1+tan^2 u)/(3 −tan^2 u)) du     ( remember (1/(cos^2 u))=1+tan^2 u )             =  (1/3) ∫  (((1+tan^2 u))/(1−(((tanu)/( (√3) )))^2 )) du = (1/( (√3)))  argth(((tanu)/( (√3) ))) + c  Finally we get  F(x)= (2/( (√3))) argth(((tan((x/2)))/( (√3)))) + k
LetnameditF(x)Wecanexplicitthedenominator1+sinx+sin(2x)=Im(1+eix+ei2x)=Im(ei3x1eix1)=Im(ei3x2(ei3x2ei3x2)eix2(eix2eix2))=Im(eix.sin(3x2)sin(x2))=sin(3(x2))sin(x2)Im(eix)=(34sin2(x2))sinxusing(sin3θ=3sinθ4sin3θ)NowF(x)=dx34sin2(x2)=2G(u)avecG(u)=du34sin2u(statingx=2u)G(u)=1cos2u3cos2u4tan2udu=1+tan2u3tan2udu(remember1cos2u=1+tan2u)=13(1+tan2u)1(tanu3)2du=13argth(tanu3)+cFinallywegetF(x)=23argth(tan(x2)3)+k
Answered by Rio Michael last updated on 17/Aug/19
 ∫((sinx)/(1 + sinx + sin2x)) = ∫ sinxdx + ∫dx + ∫(1/(2cosx))dx                                           = −cosx + x + (1/2)ln∣ secx + tanx∣ + c                                           = x −cosx + (1/2) ln ∣ secx + tanx ∣ + c  please check.
sinx1+sinx+sin2x=sinxdx+dx+12cosxdx=cosx+x+12lnsecx+tanx+c=xcosx+12lnsecx+tanx+cpleasecheck.
Commented by mr W last updated on 17/Aug/19
totally wrong sir!  (a/(x+y+z))≠(a/x)+(a/y)+(a/z) !
totallywrongsir!ax+y+zax+ay+az!
Commented by MJS last updated on 17/Aug/19
wrong. learn the laws of calculating with fractiond  (a/(a+b))≠(a/b)+(a/c)  (a/b)+(a/c)=((ac)/(bc))+((ab)/(bc))=((a(b+c))/(bc))  how could this be true: (5/6)=(5/(5+1))=(5/5)+(5/1)=1+5=6 but  (5/6)=(5/(2+4))=(5/2)+(5/4)=((15)/4) and (5/6)=(5/(3+3))=(5/3)+(5/3)=((10)/3)  ⇒^?  (5/6)=6=((15)/4)=((10)/3)
wrong.learnthelawsofcalculatingwithfractiondaa+bab+acab+ac=acbc+abbc=a(b+c)bchowcouldthisbetrue:56=55+1=55+51=1+5=6but56=52+4=52+54=154and56=53+3=53+53=103?56=6=154=103
Commented by Cmr 237 last updated on 17/Aug/19
Answered by Cmr 237 last updated on 17/Aug/19
Commented by MJS last updated on 17/Aug/19
you simply typed this into a solver. but can  you explain what happened along the path?
yousimplytypedthisintoasolver.butcanyouexplainwhathappenedalongthepath?
Commented by mathmax by abdo last updated on 18/Aug/19
this solution is not correct.
thissolutionisnotcorrect.

Leave a Reply

Your email address will not be published. Required fields are marked *