Question Number 1354 by Rasheed Ahmad last updated on 25/Jul/15
$${Slightly}\:{modified}\:{form}\:{of}\:{Q}\:\mathrm{1343}. \\ $$$$\mathrm{3}^{{log}\left(\mathrm{3}{x}+\mathrm{4}\right)} =\mathrm{4}^{{log}\left(\mathrm{4}{x}+\mathrm{3}\right)} ,{solve}\:{for}\:{x}. \\ $$
Commented by prakash jain last updated on 25/Jul/15
$$\mathrm{One}\:\mathrm{option}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{that}\:{x}=\mathrm{0}\:\mathrm{is}\:\mathrm{the}\:\mathrm{only} \\ $$$$\mathrm{solution}\:\mathrm{for}\:\frac{\mathrm{log}\:\left(\mathrm{3}{x}+\mathrm{4}\right)}{\mathrm{log}\:\left(\mathrm{4}{x}+\mathrm{3}\right)}−\frac{\mathrm{log}\:\mathrm{4}}{\mathrm{log}\:\mathrm{3}}=\mathrm{0}\:\mathrm{is}\:\mathrm{to} \\ $$$$\mathrm{take}\:\mathrm{derivative}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}. \\ $$$$\mathrm{Also}\:\mathrm{if}\:\mathrm{the}\:\mathrm{function}\:\mathrm{has}\:\mathrm{more}\:\mathrm{than}\:\mathrm{one}\:\mathrm{zero} \\ $$$$\mathrm{it}\:\mathrm{must}\:\mathrm{change}\:\mathrm{sign}\:\mathrm{twice}. \\ $$
Answered by Yugi last updated on 25/Jul/15
$$\mathrm{3}^{{log}\left(\mathrm{3}{x}+\mathrm{4}\right)} =\mathrm{4}^{{log}\left(\mathrm{4}{x}+\mathrm{3}\right)} ………\left(\mathrm{1}\right) \\ $$$${Taking}\:{logs}\:{to}\:{base}\:\mathrm{10}\:{on}\:{both}\:{sides}\:{of}\:\left(\mathrm{1}\right) \\ $$$$\left[{log}\left(\mathrm{3}{x}+\mathrm{4}\right)\right]{log}\mathrm{3}=\left[{log}\left(\mathrm{4}{x}+\mathrm{3}\right)\right]{log}\mathrm{4} \\ $$$$\Rightarrow\frac{{log}\left(\mathrm{3}{x}+\mathrm{4}\right)}{{log}\left(\mathrm{4}{x}+\mathrm{3}\right)}=\frac{{log}\mathrm{4}}{{log}\mathrm{3}}………..\left(\mathrm{2}\right) \\ $$$${Upon}\:{observation}\:{of}\:{theform}\:{of}\:\left(\mathrm{2}\right),\:{the}\:{only}\:{real}\: \\ $$$${solution}\:{is}\:{x}=\mathrm{0}\:.\:{A}\:{graphical}\:{approach}\:{yields}\: \\ $$$${the}\:{same}\:{result}\:{since}\:\left(\mathrm{1}\right)\:{is}\:{equivalent}\:{to}\:{y}=\mathrm{0}\:{for} \\ $$$${y}=\mathrm{3}^{{log}\left(\mathrm{3}{x}+\mathrm{4}\right)} −\mathrm{4}^{{log}\left(\mathrm{4}{x}+\mathrm{3}\right)} \:{defined}\:{for}\:{x}>−\frac{\mathrm{3}}{\mathrm{4}}. \\ $$$${Numerical}\:{methods}\:{work}\:{as}\:{well}. \\ $$$${Otherwise},\:{I}\:{could}\:{not}\:{find}\:{an}\:{algebraic}\:{means}\: \\ $$$${of}\:{solving}\:{for}\:{x}\:{of}\:{the}\:{form}\: \\ $$$$\frac{{log}\left({ax}+{b}\right)}{{log}\left({cx}+{d}\right)}={e}\:{where}\:{all}\:{of}\:{a},{b},{c},{d}\:{and}\:{e}\:{are} \\ $$$${non}−{zero}\:{reals}. \\ $$
Commented by Rasheed Soomro last updated on 10/Aug/15
$$ \\ $$$${I}\:{appreciate}\:{your}\:{approach}.\:{But}\:{I}\:{am}\:{doubtful}\:{about}\:{your} \\ $$$${claim}\:{that}\:\:{there}\:{is}\:{only}\:{one}\:{real}\:{solution}\:\left({x}=\mathrm{0}\:\right). \\ $$$$\:\:\:\:{You}\:{correctly}\:{derived}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{log}\left(\mathrm{3}{x}+\mathrm{4}\right)}{{log}\left(\mathrm{4}{x}+\mathrm{3}\right)}=\frac{{log}\mathrm{4}}{{log}\mathrm{3}} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:{Taking}\:{few}\:\:{steps}\:{more}\:,{we}\:{will}\:{get}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{log}\left(\mathrm{3}{x}+\mathrm{4}\right)=\frac{{log}\:\mathrm{4}}{{log}\:\mathrm{3}}\:.{log}\left(\mathrm{4}{x}+\mathrm{3}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={log}\left(\mathrm{4}{x}+\mathrm{3}\right)^{\frac{{log}\:\mathrm{4}}{{log}\:\mathrm{3}}} \\ $$$$\:\:\:\:\:\:\:\:\:{Taking}\:{antilog}\:{of}\:{both}\:{sides} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}{x}+\mathrm{4}=\left(\mathrm{4}{x}+\mathrm{3}\right)^{\frac{{log}\:\mathrm{4}}{{log}\:\mathrm{3}}} \\ $$$$\:\:\:\:\:\:\:\:{Observe}\:{right}\:{hand}\:{side}\:{the}\:{index}\:\frac{{log}\:\mathrm{4}}{{log}\:\mathrm{3}}\:>\mathrm{0}. \\ $$$$\:\:\:\:\:\:\:\:\:\:{So}\:{for}\:{positive}\:\mathrm{4}{x}+\mathrm{3}\:{theRHS}\:{must}\:{be}\:{real},\:{if}\:{I}\:{am} \\ $$$${not}\:{wrong}.\:{So}\:{I}\:{think}\:{there}\:{may}\:{be}\:{other}\:{real}\:{solution}/{s}\:\:{too}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{I}\:{agree}\:{with}\:{you}\:{that}\:{there}\:{is}\:{no}\:{algebraic}\:{way}\:{to}\:{solve}\: \\ $$$${this}\:{equation}.{But}\:{numerical}\:{methods}\:{may}\:{help}. \\ $$
Commented by Yugi last updated on 25/Jul/15