Menu Close

Solution-log-8-x-log-4-x-log-2-x-11-1-log-x-8-1-log-x-4-1-log-x-2-11-1-log-x-2-3-1-log-x-2-2-1-log-x-2-11-1-3log-x-2-1-2log-x-2-1-log-x-2-11-1-3-1-2-1-




Question Number 70017 by Shamim last updated on 30/Sep/19
Solution-  log_8 x+log_4 x+log_2 x=11  ⇒(1/(log_x 8))+(1/(log_x 4))+(1/(log_x 2))=11  ⇒(1/(log_x 2^3 ))+(1/(log_x 2^2 ))+(1/(log_x 2))=11  ⇒(1/(3log_x 2))+(1/(2log_x 2))+(1/(log_x 2))=11  ⇒((1/3)+(1/2)+1)(1/(log_x 2))=11  ⇒((11)/6)×(1/(log_x 2))=11  ⇒(1/(log_x 2))=11×(6/(11))  ⇒log_2 x=6  ⇒x=2^6   ∴x=64    is this rule correct????
Solutionlog8x+log4x+log2x=111logx8+1logx4+1logx2=111logx23+1logx22+1logx2=1113logx2+12logx2+1logx2=11(13+12+1)1logx2=11116×1logx2=111logx2=11×611log2x=6x=26x=64isthisrulecorrect????
Commented by Tony Lin last updated on 30/Sep/19
correct!
correct!
Commented by Shamim last updated on 30/Sep/19
tnks to u.
tnkstou.

Leave a Reply

Your email address will not be published. Required fields are marked *