Question Number 70017 by Shamim last updated on 30/Sep/19
$$\mathrm{Solution}- \\ $$$$\mathrm{log}_{\mathrm{8}} \mathrm{x}+\mathrm{log}_{\mathrm{4}} \mathrm{x}+\mathrm{log}_{\mathrm{2}} \mathrm{x}=\mathrm{11} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{8}}+\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{4}}+\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{2}}=\mathrm{11} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{2}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{2}}=\mathrm{11} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{3log}_{\mathrm{x}} \mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2log}_{\mathrm{x}} \mathrm{2}}+\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{2}}=\mathrm{11} \\ $$$$\Rightarrow\left(\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}\right)\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{2}}=\mathrm{11} \\ $$$$\Rightarrow\frac{\mathrm{11}}{\mathrm{6}}×\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{2}}=\mathrm{11} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{2}}=\mathrm{11}×\frac{\mathrm{6}}{\mathrm{11}} \\ $$$$\Rightarrow\mathrm{log}_{\mathrm{2}} \mathrm{x}=\mathrm{6} \\ $$$$\Rightarrow\mathrm{x}=\mathrm{2}^{\mathrm{6}} \\ $$$$\therefore\mathrm{x}=\mathrm{64} \\ $$$$ \\ $$$$\mathrm{is}\:\mathrm{this}\:\mathrm{rule}\:\mathrm{correct}???? \\ $$
Commented by Tony Lin last updated on 30/Sep/19
$${correct}! \\ $$
Commented by Shamim last updated on 30/Sep/19
$$\mathrm{tnks}\:\mathrm{to}\:\mathrm{u}. \\ $$