Menu Close

solution-set-equation-sin-6-x-cos-6-x-1-4-sin-2-2x-




Question Number 140177 by liberty last updated on 05/May/21
   solution set equation     sin^6 x + cos^6 x = (1/4)sin^2 2x
solutionsetequationsin6x+cos6x=14sin22x
Answered by som(math1967) last updated on 05/May/21
(sin^2 x+cos^2 x)^3     −3sin^2 xcos^2 x(sin^2 x+cos^2 x)=(1/4)sin^2 2x  1−(3/4)(2sinxcosx)^2 =(1/4)sin^2 2x  1=(3/4)sin^2 2x+(1/4)sin^2 2x  ⇒sin^2 2x=1  sin2x=±1  when sin2x=1    x=(4n+1)(π/4)  sin2x=−1   x=(4n−1)(π/4)
(sin2x+cos2x)33sin2xcos2x(sin2x+cos2x)=14sin22x134(2sinxcosx)2=14sin22x1=34sin22x+14sin22xsin22x=1sin2x=±1whensin2x=1x=(4n+1)π4sin2x=1x=(4n1)π4
Answered by liberty last updated on 05/May/21
⇒sin^6 x+cos^6 x=(1/4).4sin^2 x cos^2 x  ⇒(sin^2 x+cos^2 x)(sin^4 x−sin^2 xcos^2 x+cos^4 x)=(sin x cos x)^2   ⇒1−3sin^2 x cos^2 x = sin^2 x cos^2 x  ⇒4sin^2 x cos^2 x = 1  ⇒(sin 2x+1)(sin 2x−1)=0  ⇒ { ((sin 2x=−1)),((sin 2x=1)) :} ⇒ { ((x=((3π)/4)+nπ)),((x=(π/4)+nπ)) :}
sin6x+cos6x=14.4sin2xcos2x(sin2x+cos2x)(sin4xsin2xcos2x+cos4x)=(sinxcosx)213sin2xcos2x=sin2xcos2x4sin2xcos2x=1(sin2x+1)(sin2x1)=0{sin2x=1sin2x=1{x=3π4+nπx=π4+nπ

Leave a Reply

Your email address will not be published. Required fields are marked *