Menu Close

Solve-1-x-2-4-x-x-2-6x-11-2-x-4-x-3-2ax-2-ax-a-2-0-




Question Number 70898 by Henri Boucatchou last updated on 09/Oct/19
Solve :   1.)  (√(x−2)) + (√(4−x)) = x^2 −6x+11  2.)  x^4  + x^3  − 2ax^2  − ax + a^2  = 0
Solve:1.)x2+4x=x26x+112.)x4+x32ax2ax+a2=0
Answered by MJS last updated on 09/Oct/19
2)  x^4 +x^3 −2ax^2 −ax+a^2 =0  (x^2 −a)(x^2 +x−a)=0  ⇒ x=±(√a) ∨ x=−(1/2)±((√(4a+1))/2)
2)x4+x32ax2ax+a2=0(x2a)(x2+xa)=0x=±ax=12±4a+12
Answered by MJS last updated on 09/Oct/19
1)  (√(x−2))+(√(4−x))=x^2 −6x+11  t=x−3 ⇔ x=t+3  (√(1−t))+(√(1+t))=t^2 +2  squaring  2+2(√(t^2 −1))=t^4 +4t^2 +4  2(√(1−t^2 ))=t^4 +4t^2 +2  squaring  4−4t^2 =8t^6 +20t^4 +16t^2 +4  t^2 (t^6 +8t^4 +20t^2 +20)=0  t_1 =t_2 =0  no other real solution  ⇒ x=3
1)x2+4x=x26x+11t=x3x=t+31t+1+t=t2+2squaring2+2t21=t4+4t2+421t2=t4+4t2+2squaring44t2=8t6+20t4+16t2+4t2(t6+8t4+20t2+20)=0t1=t2=0nootherrealsolutionx=3

Leave a Reply

Your email address will not be published. Required fields are marked *