Question Number 65664 by mathmax by abdo last updated on 01/Aug/19
$${solve}\:\frac{\sqrt{\mathrm{1}−{x}}−\sqrt{\mathrm{2}{x}+\mathrm{1}}}{\:\sqrt{\mathrm{1}−{x}}+\sqrt{\mathrm{2}{x}+\mathrm{1}}}\:=\frac{{x}+\mathrm{1}}{\mathrm{3}} \\ $$
Answered by MJS last updated on 01/Aug/19
$$\frac{\sqrt{\mathrm{1}−{x}}−\sqrt{\mathrm{2}{x}+\mathrm{1}}}{\:\sqrt{\mathrm{1}−{x}}+\sqrt{\mathrm{2}{x}+\mathrm{1}}}=\frac{\left(\sqrt{\mathrm{1}−{x}}−\sqrt{\mathrm{2}{x}+\mathrm{1}}\right)^{\mathrm{2}} }{\left(\sqrt{\mathrm{1}−{x}}+\sqrt{\mathrm{2}{x}+\mathrm{1}}\right)\left(\sqrt{\mathrm{1}−{x}}−\sqrt{\mathrm{2}{x}+\mathrm{1}}\right)}= \\ $$$$=\frac{{x}+\mathrm{2}−\mathrm{2}\sqrt{\mathrm{1}−{x}}\sqrt{\mathrm{2}{x}+\mathrm{1}}}{−\mathrm{3}{x}}=−\frac{{x}+\mathrm{2}}{\mathrm{3}{x}}+\frac{\mathrm{2}\sqrt{\mathrm{1}−{x}}\sqrt{\mathrm{2}{x}+\mathrm{1}}}{\mathrm{3}{x}} \\ $$$$−\frac{{x}+\mathrm{2}}{\mathrm{3}{x}}+\frac{\mathrm{2}\sqrt{\mathrm{1}−{x}}\sqrt{\mathrm{2}{x}+\mathrm{1}}}{\mathrm{3}{x}}=\frac{{x}+\mathrm{1}}{\mathrm{3}} \\ $$$$\mathrm{2}\sqrt{\mathrm{1}−{x}}\sqrt{\mathrm{2}{x}+\mathrm{1}}={x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2} \\ $$$$\mathrm{squaring} \\ $$$${x}\left({x}^{\mathrm{3}} +\mathrm{4}{x}^{\mathrm{2}} +\mathrm{16}{x}+\mathrm{4}\right)=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =\mathrm{0}\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{false} \\ $$$${x}^{\mathrm{3}} +\mathrm{4}{x}^{\mathrm{2}} +\mathrm{16}{x}+\mathrm{4}=\mathrm{0} \\ $$$${x}={t}−\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${t}=\sqrt[{\mathrm{3}}]{\frac{\mathrm{170}}{\mathrm{27}}+\frac{\mathrm{2}}{\mathrm{9}}\sqrt{\mathrm{1713}}}−\sqrt[{\mathrm{3}}]{−\frac{\mathrm{170}}{\mathrm{27}}+\frac{\mathrm{2}}{\mathrm{9}}\sqrt{\mathrm{1713}}} \\ $$$${x}=−\frac{\mathrm{4}}{\mathrm{3}}+\sqrt[{\mathrm{3}}]{\frac{\mathrm{170}}{\mathrm{27}}+\frac{\mathrm{2}}{\mathrm{9}}\sqrt{\mathrm{1713}}}−\sqrt[{\mathrm{3}}]{−\frac{\mathrm{170}}{\mathrm{27}}+\frac{\mathrm{2}}{\mathrm{9}}\sqrt{\mathrm{1713}}} \\ $$$${x}\approx−.\mathrm{266582} \\ $$
Commented by mathmax by abdo last updated on 01/Aug/19
$${thank}\:{you}\:{sir}. \\ $$