Menu Close

Solve-cos-1-x-1-x-2-1-log-e-2-sin-2x-1-x-2-pi-dx-Evaluate-pi-2-pi-2-sin-2-xcos-2-x-cosx-sinx-dx-




Question Number 73429 by Henri Boucatchou last updated on 12/Nov/19
   Solve : ∫(([cos^(−1) x(√(1−x^2 ))]^(−1) )/(log_e [2+((sin(2x(√(1−x^2 ))))/π)]))dx    Evaluate  ∫_(−π/2) ^( π/2) sin^2 xcos^2 x(cosx+sinx)dx
Solve:[cos1x1x2]1loge[2+sin(2x1x2)π]dxEvaluateπ/2π/2sin2xcos2x(cosx+sinx)dx
Commented by MJS last updated on 12/Nov/19
∫sin^2  x cos^2  x (cos x +sin x)dx=  =∫sin^3  x cos^2  x dx+∫sin^2  x cos^3  x dx=  =−((∫sin 5x dx)/(16))+((∫sin 3x dx)/(16))+((∫sin x dx)/8)−       −((∫cos 5x dx)/(16))−((∫cos 3x dx)/(16))+((∫cos x dx)/8)=  =((cos 5x)/(80))−((cos 3x)/(48))−((cos x)/8)−((sin 5x)/(80))−((sin 3x)/(48))+((sin x)/8)+C  ∫_(−(π/2)) ^(π/2) sin^2  x cos^2  x (cos x +sin x)dx=(4/(15))
sin2xcos2x(cosx+sinx)dx==sin3xcos2xdx+sin2xcos3xdx==sin5xdx16+sin3xdx16+sinxdx8cos5xdx16cos3xdx16+cosxdx8==cos5x80cos3x48cosx8sin5x80sin3x48+sinx8+Cπ2π2sin2xcos2x(cosx+sinx)dx=415
Commented by MJS last updated on 12/Nov/19
please check the first one, is it sin or sin^(−1) ?
pleasecheckthefirstone,isitsinorsin1?
Commented by MJS last updated on 12/Nov/19
...anyway I cannot solve it
anywayIcannotsolveit
Answered by MJS last updated on 12/Nov/19
∫sin^2  x cos^2  x (cos x +sin x)dx=  =∫sin^3  x cos^2  x dx+∫sin^2  x cos^3  x dx=       [u=cos x → dx=−(du/(sin x)); v=sin x → dx=(dv/(cos x))]  =∫u^4 −u^2 du+∫v^2 −v^4 dv=  =(u^5 /5)−(u^3 /3)+(v^3 /3)−(v^5 /5)=  =((cos^5  x)/5)−((cos^3  x)/3)+((sin^3  x)/3)−((sin^5  x)/5)+C  ∫_(−(π/2)) ^(π/2) sin^2  x cos^2  x (cos x +sin x)dx=(4/(15))
sin2xcos2x(cosx+sinx)dx==sin3xcos2xdx+sin2xcos3xdx=[u=cosxdx=dusinx;v=sinxdx=dvcosx]=u4u2du+v2v4dv==u55u33+v33v55==cos5x5cos3x3+sin3x3sin5x5+Cπ2π2sin2xcos2x(cosx+sinx)dx=415

Leave a Reply

Your email address will not be published. Required fields are marked *