Menu Close

Solve-D-2-3D-2-y-2x-3-by-operator-D-method-




Question Number 131253 by bramlexs22 last updated on 03/Feb/21
Solve (D^2 −3D+2)y = 2x^3   by operator D method
Solve(D23D+2)y=2x3byoperatorDmethod
Answered by liberty last updated on 03/Feb/21
y_h (x)= C_1 e^x +C_2 e^(2x)   and we may use a trial function of the form  ax^3 +bx^2 +cx+d to find a particular solution  and we get y_p (x)=x^3 +((9x^2 )/2)+((21x)/2)+((45)/4)  then general solution y(x)=y_h (x)+y_p (x)  However a more direct approach to find  this particular solution is possible as well  consider (1/(1−x)) = Σ_(k=0) ^∞  x^k  , plug in x = D   (1/(1−D)) = Σ_(k=0) ^∞  D^k  . If we apply this operator  to 2x^3  we find that D^k (2x^3 )= 0 for k>3  so (1/(1−D))(2x^3 )=(1+D+D^2 +D^3 )(2x^3 )                             = 2x^3 +6x^2 +12x+12  Now y_p (x)=(1/((D−1)(D−2)))(2x^3 ) = (1/((1−D)(2−D)))(2x^3 )   y_p (x) = (1/(2−D))(2x^3 +6x^2 +12x+12)   y_p (x) = (1/(1−((D/2))))(x^3 +3x^2 +6x+6)   y_p (x)=(1+(D/2)+(D^2 /4)+(D^3 /8))(x^3 +3x^2 +6x+6)   y_p (x) = x^3 +3x^2 +6x+6+((3x^2 )/2)+3x+3+((3x)/2)+(3/2)+(3/4)                = x^3 +((9x^2 )/2)+((21x)/2)+((45)/4)
yh(x)=C1ex+C2e2xandwemayuseatrialfunctionoftheformax3+bx2+cx+dtofindaparticularsolutionandwegetyp(x)=x3+9x22+21x2+454thengeneralsolutiony(x)=yh(x)+yp(x)Howeveramoredirectapproachtofindthisparticularsolutionispossibleaswellconsider11x=k=0xk,pluginx=D11D=k=0Dk.Ifweapplythisoperatorto2x3wefindthatDk(2x3)=0fork>3so11D(2x3)=(1+D+D2+D3)(2x3)=2x3+6x2+12x+12Nowyp(x)=1(D1)(D2)(2x3)=1(1D)(2D)(2x3)yp(x)=12D(2x3+6x2+12x+12)yp(x)=11(D2)(x3+3x2+6x+6)yp(x)=(1+D2+D24+D38)(x3+3x2+6x+6)yp(x)=x3+3x2+6x+6+3x22+3x+3+3x2+32+34=x3+9x22+21x2+454
Answered by Ar Brandon last updated on 03/Feb/21
y′′−3y′+2y=2x^3   HE: m^2 −3m+2=0, m=2, m=1  y_(gh) =Ae^(2x) +Be^x    y_p =A(x)e^(2x) +B(x)e^x =au+bv   { ((a′u+b′v=0),(...(1))),((a′u′+b′v′=2x^3 ),(...(2))) :}  W(u,v)= determinant ((u,v),((u′),(v′)))= determinant ((e^(2x) ,e^x ),((2e^(2x) ),e^x ))=−e^(3x)   W_u = determinant ((0,e^x ),((2x^3 ),e^x ))=−2x^3 e^x   ,  W_v = determinant ((e^(2x) ,0),((2e^(2x) ),(2x^3 )))=2x^3 e^(2x)   a=∫(W_u /W)dx=∫2x^3 e^(−2x) dx=2{−(x^3 /2)e^(−2x) +(3/2)∫x^2 e^(−2x) dx}     =−x^3 e^(−2x) +3{−(x^2 /2)e^(−2x) +∫xe^(−2x) dx}     =−x^3 e^(−2x) −((3x^2 )/2)e^(−2x) +3{−(x/2)e^(−2x) +(1/2)∫e^(−2x) dx}     =−x^3 e^(−2x) −((3x^2 )/2)e^(−2x) −((3x)/2)e^(−2x) −(3/4)e^(−2x) +C_1   b=∫(W_v /W)dx=−∫2x^3 e^(−x) (/)dx=−2{−x^3 e^(−x) +3∫x^2 e^(−x) dx}     =2x^3 e^(−x) −6{−x^2 e^(−x) +2∫xe^(−x) dx}     =2x^3 e^(−x) +6x^2 e^(−x) −12{−xe^(−x) +∫e^(−x) dx}     =2x^3 e^(−x) +6x^2 e^(−x) +12xe^(−x) +12e^(−x) +C_2   y_p =A(x)e^(2x) +B(x)e^x , Y_G =y_(gh) +y_p   Y_G =αe^(2x) +βe^x −(x^3 +((3x^2 )/2)+((3x)/2)+(3/4))+(2x^3 +6x^2 +12x+12)         =αe^(2x) +βe^x +x^3 +((9x^2 )/2)+((21x)/2)+((45)/4)
y3y+2y=2x3HE:m23m+2=0,m=2,m=1ygh=Ae2x+Bexyp=A(x)e2x+B(x)ex=au+bv{au+bv=0(1)au+bv=2x3(2)W(u,v)=|uvuv|=|e2xex2e2xex|=e3xWu=|0ex2x3ex|=2x3ex,Wv=|e2x02e2x2x3|=2x3e2xa=WuWdx=2x3e2xdx=2{x32e2x+32x2e2xdx}=x3e2x+3{x22e2x+xe2xdx}=x3e2x3x22e2x+3{x2e2x+12e2xdx}=x3e2x3x22e2x3x2e2x34e2x+C1b=WvWdx=2x3exdx=2{x3ex+3x2exdx}=2x3ex6{x2ex+2xexdx}=2x3ex+6x2ex12{xex+exdx}=2x3ex+6x2ex+12xex+12ex+C2yp=A(x)e2x+B(x)ex,YG=ygh+ypYG=αe2x+βex(x3+3x22+3x2+34)+(2x3+6x2+12x+12)=αe2x+βex+x3+9x22+21x2+454