Solve-D-2-3D-2-y-2x-3-by-operator-D-method- Tinku Tara June 3, 2023 Differential Equation FacebookTweetPin Question Number 131253 by bramlexs22 last updated on 03/Feb/21 Solve(D2−3D+2)y=2x3byoperatorDmethod Answered by liberty last updated on 03/Feb/21 yh(x)=C1ex+C2e2xandwemayuseatrialfunctionoftheformax3+bx2+cx+dtofindaparticularsolutionandwegetyp(x)=x3+9x22+21x2+454thengeneralsolutiony(x)=yh(x)+yp(x)Howeveramoredirectapproachtofindthisparticularsolutionispossibleaswellconsider11−x=∑∞k=0xk,pluginx=D11−D=∑∞k=0Dk.Ifweapplythisoperatorto2x3wefindthatDk(2x3)=0fork>3so11−D(2x3)=(1+D+D2+D3)(2x3)=2x3+6x2+12x+12Nowyp(x)=1(D−1)(D−2)(2x3)=1(1−D)(2−D)(2x3)yp(x)=12−D(2x3+6x2+12x+12)yp(x)=11−(D2)(x3+3x2+6x+6)yp(x)=(1+D2+D24+D38)(x3+3x2+6x+6)yp(x)=x3+3x2+6x+6+3x22+3x+3+3x2+32+34=x3+9x22+21x2+454 Answered by Ar Brandon last updated on 03/Feb/21 y″−3y′+2y=2x3HE:m2−3m+2=0,m=2,m=1ygh=Ae2x+Bexyp=A(x)e2x+B(x)ex=au+bv{a′u+b′v=0…(1)a′u′+b′v′=2x3…(2)W(u,v)=|uvu′v′|=|e2xex2e2xex|=−e3xWu=|0ex2x3ex|=−2x3ex,Wv=|e2x02e2x2x3|=2x3e2xa=∫WuWdx=∫2x3e−2xdx=2{−x32e−2x+32∫x2e−2xdx}=−x3e−2x+3{−x22e−2x+∫xe−2xdx}=−x3e−2x−3x22e−2x+3{−x2e−2x+12∫e−2xdx}=−x3e−2x−3x22e−2x−3x2e−2x−34e−2x+C1b=∫WvWdx=−∫2x3e−xdx=−2{−x3e−x+3∫x2e−xdx}=2x3e−x−6{−x2e−x+2∫xe−xdx}=2x3e−x+6x2e−x−12{−xe−x+∫e−xdx}=2x3e−x+6x2e−x+12xe−x+12e−x+C2yp=A(x)e2x+B(x)ex,YG=ygh+ypYG=αe2x+βex−(x3+3x22+3x2+34)+(2x3+6x2+12x+12)=αe2x+βex+x3+9x22+21x2+454 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: proof-that-sin-1sin-2-sin-n-sin-pi-n-sin-2pi-n-sin-n-1-pi-n-for-n-N-0-1-Next Next post: solve-10x-25-mod-15-