Menu Close

solve-Differential-equation-x-2-d-2-y-dx-2-4x-dy-dx-3y-x-3-2x-5-




Question Number 76964 by peter frank last updated on 01/Jan/20
solve Differential  equation  x^2 (d^2 y/dx^2 )−4x(dy/dx)+3y=x^3 +2x+5
solveDifferentialequationx2d2ydx24xdydx+3y=x3+2x+5
Answered by mind is power last updated on 02/Jan/20
x^2 (d^2 y/dx^2 )−4x(dy/dx)+3y=0..E  theorie of linear algebra applied in equation  we know that solution of linear Differtionsl equation  forme vectoriel subspace of dim 2  let y=x^m   ⇒((m(m−1)−4m+3)=0  ⇒m^2 −5m+3=0  m_1 =((5−(√(13)))/2),m_2 =((5+(√(13)))/2)  y_1 =x^((5−(√(13)))/2) ,y_2 =x^((5+(√(13)))/2)    are independente ⇒  (y_1 ,y_2 ) Bases of solutions of E  General solution of E is ,∀y∈E ∃! (a,b)∈R^2 ∣y=ax^((5−(√(13)))/2) +bx^((5+(√(13)))/2)   particulare solution  P(x)=ax^3 +bx^2 +cx+d  ⇒(6a−12a+3a)=1  (2b−8b+3b)=0  (−4c+3c)=2  3d=5  a=−(1/3)  b=0  c=−2  d=(5/3)  p(x)=((−x^3 )/3)−2x+(5/3)  Y=ax^((5−(√(13)))/2) +bx^((5+(√(13)))/2)    ((−x^3 −6x+5)/3),(a,b)∈R^2
x2d2ydx24xdydx+3y=0..EtheorieoflinearalgebraappliedinequationweknowthatsolutionoflinearDiffertionslequationformevectorielsubspaceofdim2lety=xm((m(m1)4m+3)=0m25m+3=0m1=5132,m2=5+132y1=x5132,y2=x5+132areindependente(y1,y2)BasesofsolutionsofEGeneralsolutionofEis,yE!(a,b)R2y=ax5132+bx5+132particularesolutionP(x)=ax3+bx2+cx+d(6a12a+3a)=1(2b8b+3b)=0(4c+3c)=23d=5a=13b=0c=2d=53p(x)=x332x+53Y=ax5132+bx5+132x36x+53,(a,b)R2
Commented by peter frank last updated on 03/Jan/20
thank you
thankyou
Commented by peter frank last updated on 03/Jan/20
where this 6a−12a+3a  came frpm
wherethis6a12a+3acamefrpm

Leave a Reply

Your email address will not be published. Required fields are marked *