Solve-dx-1-x-2-3- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 132082 by liberty last updated on 11/Feb/21 Solve∫dx(1+x2)3? Answered by EDWIN88 last updated on 11/Feb/21 OstrogradskimethodConsiderddx(ax3+bx(x2+1)2)=−ax4+(3a−3b)x2+b(x2+1)3∫ddx[ax3+bx(x2+1)2]=∫−ax4+(3a−3b)x2+b(x2+1)3dx+∫cx2+1dxcomparingcoefficients1=−ax4+(3a−3b)x2+c(x2+1)2+b1=(c−a)x4+(3a−3b+2c)x2+b+cwegeta=c,b+c=1,3a−3b+2c=0thena=c=38;b=58thereforeI=18[3x3+5x(x2+1)2]+38∫dxx2+1I=18[3x3+5x(x2+1)2]+38arctan(x)+cpleasecheck Answered by liberty last updated on 11/Feb/21 byOstrogradskimethodlet∫dx(x2+1)3=ax3+bx(x2+1)2+∫cx2+1dxdifferentiatingbothsides1(x2+1)3=(3ax2+b)(x2+1)2−4x(x2+1)(ax3+bx)(x2+1)4+cx2+11(x2+1)3=(3ax2+b)(x2+1)−(4ax4+4bx2)(x2+1)3+c(x2+1)2(x2+1)31=3ax4+3ax2+bx2+b−4ax4−4bx2+cx4+2cx2+c1=(−a+c)x4+(3a−3b+2c)x2+b+cwegetc=a;b+c=1;3a−3b+2c=0⇒5c−3(1−c)=0;8c=3c=a=38andb=58thentheintegralbecome∫dx(x2+1)3=3x3+5x8(x2+1)2+∫38dx(x2+1)=3x3+5x8(x2+1)2+38arctanx+c Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Given-the-function-f-x-0-x-1-t-3-1-2-dt-If-h-x-is-the-inverse-of-f-x-and-h-x-is-derivative-of-h-x-Find-the-value-of-h-x-h-x-2-Next Next post: Find-a-b-c-which-fulfill-lim-x-0-x-a-b-cos-x-c-sin-x-x-5-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.