Menu Close

Solve-for-a-and-explain-your-working-a-e-a-




Question Number 1828 by Filup last updated on 07/Oct/15
Solve for a and explain your working  a=e^a
Solveforaandexplainyourworkinga=ea
Commented by Alejandro Prieto last updated on 14/Oct/15
Gra^� ficamente podri^� a verse que las funciones  f(x) = e^x  y g(x) = x  no intersectan en ningu^� n punto.  Por tanto, puede pensarse que no existen soluciones en R.
Graficamente´podria´versequelasfuncionesf(x)=exyg(x)=xnointersectanenningun´punto.Portanto,puedepensarsequenoexistensolucionesenR.
Commented by 123456 last updated on 16/Oct/15
howeve i suspect that its have solution into C  z=e^z       (z=x+yı,x∈R,y∈R)  x+yı=e^x e^(yı)   x+yı=e^x cos y+ıe^x sin y   { ((x=e^x cos y)),((y=e^x sin y)) :}
howeveisuspectthatitshavesolutionintoCz=ez(z=x+yı,xR,yR)x+yı=exeyıx+yı=excosy+ıexsiny{x=excosyy=exsiny
Answered by 123456 last updated on 08/Oct/15
f(x)=e^x −x  f(x)=0⇔e^x −x=0⇔e^x =x  x∈R  e^x ≥0  x≤0≤e^x   so if it as a real solution it would be at  [0,+∞)  f(0)=e^0 −0=1≠0  f′(x)=e^x −1  x≥0,e^x ≥1⇒f′(x)≥0  so f is increasing into [0,+∞)  lets x>0, by mean value theorem into  [0,x],∀ξ∈[0,x] with g(x)=e^x   g′(ξ)=((e^x −1)/(x−0))  g′(ξ)=e^ξ ≥1,∀ξ≥0  ((e^x −1)/x)≥1  e^x −1≥x  e^x −x−1≥0  f(x)−1≥0  f(x)≥1
f(x)=exxf(x)=0exx=0ex=xxRex0x0exsoifitasarealsolutionitwouldbeat[0,+)f(0)=e00=10f(x)=ex1x0,ex1f(x)0sofisincreasinginto[0,+)letsx>0,bymeanvaluetheoreminto[0,x],ξ[0,x]withg(x)=exg(ξ)=ex1x0g(ξ)=eξ1,ξ0ex1x1ex1xexx10f(x)10f(x)1

Leave a Reply

Your email address will not be published. Required fields are marked *