Menu Close

Solve-for-f-x-f-x-1-f-x-3-




Question Number 1295 by prakash jain last updated on 20/Jul/15
Solve for f(x)  f(x+1)=[f(x)]^3
Solveforf(x)f(x+1)=[f(x)]3
Commented by Rasheed Ahmad last updated on 20/Jul/15
(Rasheed Soomro)  f(x)=±1  Verification:  1) f(x)=1⇒f(x+1)=1  ∧ [f(x)]^3 =(1)^3 =1  2) f(x)=−1⇒f(x+1)=−1 ∧  [f(x)]^3 =(−1)^3 =−1
(RasheedSoomro)f(x)=±1Verification:1)f(x)=1f(x+1)=1[f(x)]3=(1)3=12)f(x)=1f(x+1)=1[f(x)]3=(1)3=1
Commented by Rasheed Soomro last updated on 20/Jul/15
Let′s first consider for f(x) to be polynomial.  Then  f(x)=a or f(x)=ax+b or ax^2 +bx+c ...........  1)  f(x)=a=ax^0     f(x+1)=[f(x)]^3 ................(i)  f(x+1)=a(x+1)^0 =a.........(ii)  and [f(x)]^3 =a^3 ...................(iii)  from(i),(ii) and (iii)  a=a^3  ⇒a^2 =1 ⇒a^3 −a=0⇒a=0 ∨a^2 =1 ⇒a=0,1, −1  Hence f(x)=0,±1   f(x)=ax+b and f(x)=ax^2 +bx+c  both will give same   result though calculation will be complicated.  I think for f(x) to be poynomial there exist only these three  solutions.
Letsfirstconsiderforf(x)tobepolynomial.Thenf(x)=aorf(x)=ax+borax2+bx+c..1)f(x)=a=ax0f(x+1)=[f(x)]3.(i)f(x+1)=a(x+1)0=a(ii)and[f(x)]3=a3.(iii)from(i),(ii)and(iii)a=a3a2=1a3a=0a=0a2=1a=0,1,1Hencef(x)=0,±1f(x)=ax+bandf(x)=ax2+bx+cbothwillgivesameresultthoughcalculationwillbecomplicated.Ithinkforf(x)tobepoynomialthereexistonlythesethreesolutions.
Answered by prakash jain last updated on 20/Jul/15
Use another technique to remove power.  F(x)=log_q f(x)  F(x+1)=3F(x)  F(x)=3^x   log_q f(x)=3^x   f(x)=q^3^x    f(x+1)=q^3^(x+1)  =q^3^x  ∙q^3^x  ∙q^3^x  =(q^3^x  )^3 =(f(x))^3
Useanothertechniquetoremovepower.F(x)=logqf(x)F(x+1)=3F(x)F(x)=3xlogqf(x)=3xf(x)=q3xf(x+1)=q3x+1=q3xq3xq3x=(q3x)3=(f(x))3
Commented by Rasheed Ahmad last updated on 20/Jul/15
Marvellous! I  couldn′t even think  of it. However I want to know how  you determine F(x)=3^x ?
Marvellous!Icouldnteventhinkofit.HoweverIwanttoknowhowyoudetermineF(x)=3x?

Leave a Reply

Your email address will not be published. Required fields are marked *