Menu Close

solve-for-T-h-T-s-pi-2-erf-H-erf-h-




Question Number 8886 by vuckintv last updated on 04/Nov/16
solve for β  T(h)=T_s −((√π)/2)×(β/ξ)×[erf(ξH)−erf(ξh)]
$${solve}\:{for}\:\beta \\ $$$${T}\left({h}\right)={T}_{{s}} −\frac{\sqrt{\pi}}{\mathrm{2}}×\frac{\beta}{\xi}×\left[{erf}\left(\xi{H}\right)−{erf}\left(\xi{h}\right)\right] \\ $$$$ \\ $$
Answered by Rasheed Soomro last updated on 04/Nov/16
T(h)=T_s −((√π)/2)×(β/ξ)×[erf(ξH)−erf(ξh)]  ((√π)/2)×(β/ξ)×[erf(ξH)−erf(ξh)]=T_s −T(h)  (β/ξ)=((2(T_s −T(h)))/( (√π)([erf(ξH)−erf(ξh)])))  β=((2ξ(T_s −T(h)))/( (√π)([erf(ξH)−erf(ξh)])))
$${T}\left({h}\right)={T}_{{s}} −\frac{\sqrt{\pi}}{\mathrm{2}}×\frac{\beta}{\xi}×\left[{erf}\left(\xi{H}\right)−{erf}\left(\xi{h}\right)\right] \\ $$$$\frac{\sqrt{\pi}}{\mathrm{2}}×\frac{\beta}{\xi}×\left[{erf}\left(\xi{H}\right)−{erf}\left(\xi{h}\right)\right]={T}_{{s}} −{T}\left({h}\right) \\ $$$$\frac{\beta}{\xi}=\frac{\mathrm{2}\left({T}_{{s}} −{T}\left({h}\right)\right)}{\:\sqrt{\pi}\left(\left[{erf}\left(\xi{H}\right)−{erf}\left(\xi{h}\right)\right]\right)} \\ $$$$\beta=\frac{\mathrm{2}\xi\left({T}_{{s}} −{T}\left({h}\right)\right)}{\:\sqrt{\pi}\left(\left[{erf}\left(\xi{H}\right)−{erf}\left(\xi{h}\right)\right]\right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *