Menu Close

Solve-for-ve-integers-gt-0-x-2-y-4-z-6-




Question Number 4230 by prakash jain last updated on 03/Jan/16
Solve for +ve integers >0.  x^2 +y^4 =z^6
Solvefor+veintegers>0.x2+y4=z6
Commented by Rasheed Soomro last updated on 04/Jan/16
x^2 +(y^2 )^2 =(z^3 )^2   A special type pathagorean triplet in  which first/second member is perfect square  and third member is perfect cube.  75,100,125  75^2 +100^2 =125^2   75^2 +10^4 =5^6
x2+(y2)2=(z3)2Aspecialtypepathagoreantripletinwhichfirst/secondmemberisperfectsquareandthirdmemberisperfectcube.75,100,125752+1002=1252752+104=56
Answered by Rasheed Soomro last updated on 05/Jan/16
x^2 +(y^2 )^2 =(z^3 )^2   (x,y^2 ,z^3 ) is Pythagorean triplet.  A special type Pythagorean triplet  whose one of the first two members  is perfect square and third member  is perfect cube.  −−−−−−−−−−−−−−−−−−  For all m,n∈Z^+  ∧ m>n  (m^2 −n^2  , 2mn, m^2 +n^2 ) is a Pythagorean  triplet.  −−−−−−−−−−−−−−−−−−−−−  Trying  2mn to be perfect square  I let m=2n  (We also can let m=8n this will led  an  other solution. Or m=2^(2k−1) n)  (  (2n)^2 −n^2  , 4n^2  , (2n)^2 +n^2    )=(3n^2  ,4n^2  , 5n^2  )  Trying 5n^2   to be perfect cube I guessed n=5 ∗  m=2n=2(5)=10  So   (m^2 −n^2  , 2mn, m^2 +n^2 )          =(10^2 −5^2  , 2(10)(5) , 10^2 +5^2 )          =(75 , 100,125)  ∴   75^2 +100^2 =125^2   Or 75^2 +(10^2 )^2 =(5^3 )^2          75^2 +10^4 =5^6   ∗An other guess for 5n^2   to be perfect cube  5n^2 =5.5^2 .4^3 ⇒n=5.2^3 =40  m=2n=2(40)=80  (m^2 −n^2  , 2mn, m^2 +n^2 )  =(80^2 −40^2  , 2(80)(40) , 80^2 +40^2  )  =(6400−1600 , 6400 , 6400+1600)  =(4800,6400,8000)  ∴ 4800^2 +6400^2 =8000^2        4800^2 +(80^2 )^2 =(20^3 )^2       4800^2 +80^4 =20^6
x2+(y2)2=(z3)2(x,y2,z3)isPythagoreantriplet.AspecialtypePythagoreantripletwhoseoneofthefirsttwomembersisperfectsquareandthirdmemberisperfectcube.Forallm,nZ+m>n(m2n2,2mn,m2+n2)isaPythagoreantriplet.Trying2mntobeperfectsquareIletm=2n(Wealsocanletm=8nthiswillledanothersolution.Orm=22k1n)((2n)2n2,4n2,(2n)2+n2)=(3n2,4n2,5n2)Trying5n2tobeperfectcubeIguessedn=5m=2n=2(5)=10So(m2n2,2mn,m2+n2)=(10252,2(10)(5),102+52)=(75,100,125)752+1002=1252Or752+(102)2=(53)2752+104=56Anotherguessfor5n2tobeperfectcube5n2=5.52.43n=5.23=40m=2n=2(40)=80(m2n2,2mn,m2+n2)=(802402,2(80)(40),802+402)=(64001600,6400,6400+1600)=(4800,6400,8000)48002+64002=8000248002+(802)2=(203)248002+804=206
Answered by Rasheed Soomro last updated on 05/Jan/16
General Solution  x^2 +(y)^2 =(z^3 )^2   (x,y^2 ,z^3 ) is Pythagorean triplet.  −−−−−−−−−−−−−−−−  For m>n and m,n∈N one general  Pythagorean triplet is  (m^2 −n^2 ,2mn,m^2 +n^2 )  −−−−−−−−−−−−−−−−−  To make 2mn perfect square  Let m=2^(2k−1) n  2mn=2(2^(2k−1) n)n=2^(2k) n^2   m^2 +n^2 =(2^(2k−1) n)^2 +n^2 =(2^(4k−2) +1)n^2   In order to make m^2 +n^2  perfect cube  Let n=2^(4k−2) +1  ∴ m=2^(2k−1) n=2^(2k−1) ×(2^(4k−2) +1)=2^(6k−3) +2^(2k−1)   −−−−−−−  m^2 −n^2 =(2^(6k−3) +2^(2k−1) )^2 −(2^(4k−2) +1)^2         =2^(12k−6) +2^(4k−2) +2^(8k−3) −2^(8k−4) −1−2^(4k−1)   2mn=2^(2k) (2^(4k−2) +1)^2 ={2^k (2^(4k−2) +1)}^2   m^2 +n^2 =(2^(4k−2) +1)^3       {(2^(6k−3) +2^(2k−1) )^2 −(2^(4k−2) +1)^2 }^2 +{ 2^k (2^(4k−2) +1)}^4                                                             =(2^(4k−2) +1)^6    ∀ k∈N  (x,y,z)=((2^(6k−3) +2^(2k−1) )^2 −(2^(4k−2) +1)^2  , 2^k (2^(4k−2) +1),2^(4k−2) +1)  For k=1  75^2 +10^4 =5^6
GeneralSolutionx2+(y)2=(z3)2(x,y2,z3)isPythagoreantriplet.Form>nandm,nNonegeneralPythagoreantripletis(m2n2,2mn,m2+n2)Tomake2mnperfectsquareLetm=22k1n2mn=2(22k1n)n=22kn2m2+n2=(22k1n)2+n2=(24k2+1)n2Inordertomakem2+n2perfectcubeLetn=24k2+1m=22k1n=22k1×(24k2+1)=26k3+22k1m2n2=(26k3+22k1)2(24k2+1)2=212k6+24k2+28k328k4124k12mn=22k(24k2+1)2={2k(24k2+1)}2m2+n2=(24k2+1)3{(26k3+22k1)2(24k2+1)2}2+{2k(24k2+1)}4=(24k2+1)6kN(x,y,z)=((26k3+22k1)2(24k2+1)2,2k(24k2+1),24k2+1)Fork=1752+104=56
Commented by prakash jain last updated on 05/Jan/16
A good formula.  An observation for specific case:  75^2 +10^4 =5^6   5^4 ∙3^2 +5^4 .2^4 =5^4 ∙5^2   So if x^2 +y^2 =z^2  and y is a perfect square say u^2   then we can get solution for x^2 +y^4 =z^6   by multiplying x,y,z by z^4 .
Agoodformula.Anobservationforspecificcase:752+104=565432+54.24=5452Soifx2+y2=z2andyisaperfectsquaresayu2thenwecangetsolutionforx2+y4=z6bymultiplyingx,y,zbyz4.
Commented by Rasheed Soomro last updated on 06/Jan/16
G^(OO) D Technique!  T HαnkS!
GOODTechnique!THαnkS!
Commented by Rasheed Soomro last updated on 08/Jan/16
Pythagorean Triple                  ▽   Triple satisfying x^2 +y^4 =z^6   Your technique applying  twice  x^2 +y^2 =z^2   x^2 y^2 +y^2 y^2 =z^2 y^2   (xy)^2 +y^4 =(zy)^2   (xy)^2 (zy)^4 +y^4 (zy)^4 =(zy)^2 (zy)^4   (xy^3 z^2 )^2 +(y^2 z)^4 =(zy)^6   (x,y,z) is Pythagorean triplet        ⇒(xy^3 z^2  , y^2 z , zy) is tripletfor x^2 +y^4 =z^6 .  (3,4,5)⇒( 3(4)^3 (5)^2 , (4)^2 (5),(5)(4) )                =(  3(64)(25),16(5),20  )=(4800,80,20)   (4,3,5)⇒( 4(3)^3 (5)^2 ,(3)^2 (5),(3)(5) )=(2700,45,15)
PythagoreanTripleTriplesatisfyingx2+y4=z6Yourtechniqueapplyingtwicex2+y2=z2x2y2+y2y2=z2y2(xy)2+y4=(zy)2(xy)2(zy)4+y4(zy)4=(zy)2(zy)4(xy3z2)2+(y2z)4=(zy)6(x,y,z)isPythagoreantriplet(xy3z2,y2z,zy)istripletforx2+y4=z6.(3,4,5)(3(4)3(5)2,(4)2(5),(5)(4))=(3(64)(25),16(5),20)=(4800,80,20)(4,3,5)(4(3)3(5)2,(3)2(5),(3)(5))=(2700,45,15)
Commented by Rasheed Soomro last updated on 07/Jan/16
(x,y,z) is Pythagorean triplet             ⇒(xy^3 z^2  , y^2 z , zy) is required triplet.  Let  x,y,z are m^2 −n^2 ,2mn , m^2 +n^2  type.  xy^3 z^2 =(m^2 −n^2 )(2mn)^3 (m^2 +n^2 )^2   y^2 z=(2mn)^2 (m^2 +n^2 )  yz=(2mn)(m^2 +n^2 )  General Triplet for x^2 +y^4 =z^6 :  ((((m^2 −n^2 )(2mn)^3 (m^2 +n^2 )^2 ,)/)(((2mn)^2 (m^2 +n^2 ),)/)(((2mn)(m^2 +n^2 ))/))  Or  ((((m^2 −n^2 )^3 (2mn)(m^2 +n^2 )^2 ,)/)(((m^2 −n^2 )^2 (m^2 +n^2 ),)/)(((m^2 −n^2 )(m^2 +n^2 ))/))  ∀ m,n∈N  with m>n
(x,y,z)isPythagoreantriplet(xy3z2,y2z,zy)isrequiredtriplet.Letx,y,zarem2n2,2mn,m2+n2type.xy3z2=(m2n2)(2mn)3(m2+n2)2y2z=(2mn)2(m2+n2)yz=(2mn)(m2+n2)GeneralTripletforx2+y4=z6:((m2n2)(2mn)3(m2+n2)2,(2mn)2(m2+n2),(2mn)(m2+n2))Or((m2n2)3(2mn)(m2+n2)2,(m2n2)2(m2+n2),(m2n2)(m2+n2))m,nNwithm>n

Leave a Reply

Your email address will not be published. Required fields are marked *