Question Number 77885 by behi83417@gmail.com last updated on 11/Jan/20
$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\::\:\boldsymbol{\mathrm{x}} \\ $$$$\mathrm{1}.\sqrt{\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}\right)\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{b}}\right)}+\sqrt{\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{b}}\right)\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{c}}\right)}+\sqrt{\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{c}}\right)\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}\right)}=\boldsymbol{\mathrm{d}} \\ $$$$\left[\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}},\boldsymbol{\mathrm{c}},\boldsymbol{\mathrm{d}}\in\boldsymbol{\mathrm{R}}\right. \\ $$$$\left.\mathrm{try}\:\mathrm{for}:\:\:\mathrm{a}=\mathrm{4},\mathrm{b}=\mathrm{3},\mathrm{c}=\mathrm{2},\mathrm{d}=\mathrm{1}\right] \\ $$$$\mathrm{2}.\:\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}^{\mathrm{2}} \right)\sqrt{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}}+\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}\right)\sqrt{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}^{\mathrm{2}} }=\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}+\mathrm{1} \\ $$$$\mathrm{3}.\:\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}^{\mathrm{2}} \right)\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{a}}}+\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{a}}\right)\sqrt{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}^{\mathrm{2}} }=\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}+\mathrm{1} \\ $$$$\left[\boldsymbol{\mathrm{a}}\in\boldsymbol{\mathrm{R}}\right. \\ $$$$\left.\mathrm{try}\:\mathrm{for}:\:\mathrm{a}=\frac{\mathrm{1}}{\mathrm{2}}\:\right] \\ $$$$ \\ $$
Answered by jagoll last updated on 12/Jan/20
$$\mathrm{1}.\:\sqrt{\left({x}−\mathrm{4}\right)\left({x}−\mathrm{3}\right)}+\sqrt{\left({x}−\mathrm{3}\right)\left({x}−\mathrm{2}\right)}=\mathrm{1}−\sqrt{\left({x}−\mathrm{2}\right)\left({x}−\mathrm{4}\right)} \\ $$$${squaring} \\ $$$$\left({x}−\mathrm{3}\right)\left\{{x}−\mathrm{4}+{x}−\mathrm{2}\right\}+\mathrm{2}\left({x}−\mathrm{3}\right)\sqrt{\left({x}−\mathrm{4}\right)\left({x}−\mathrm{2}\right)}=\mathrm{1}+\left({x}−\mathrm{4}\right)\left({x}−\mathrm{2}\right)−\mathrm{2}\sqrt{\left({x}−\mathrm{4}\right)\left({x}−\mathrm{2}\right)} \\ $$$$\left({x}−\mathrm{3}\right)\left\{\mathrm{2}{x}−\mathrm{4}+\sqrt{\left({x}−\mathrm{4}\right)\left({x}−\mathrm{2}\right)}\:\right\}=\mathrm{1}+\left({x}−\mathrm{4}\right)\left({x}−\mathrm{2}\right)−\mathrm{2}\sqrt{\left({x}−\mathrm{4}\right)\left({x}−\mathrm{2}\right)} \\ $$$${let}\:{u}\:=\:{x}−\mathrm{4}\: \\ $$$$\Leftrightarrow\:\left({u}−\mathrm{1}\right)\left\{\mathrm{2}{u}+\mathrm{4}+\sqrt{{u}\left({u}+\mathrm{2}\right)}\right\}=\mathrm{1}+{u}\left({u}+\mathrm{2}\right)−\mathrm{2}\sqrt{{u}\left({u}+\mathrm{2}\right)} \\ $$$${tobe}\:{continiu} \\ $$
Commented by mr W last updated on 12/Jan/20
$${dead}−{end}\:{street}! \\ $$$${it}\:{leads}\:{to}\:{an}\:\mathrm{8}−{th}\:{order}\:{equation}\:{which} \\ $$$${is}\:{not}\:{solvable}. \\ $$
Commented by jagoll last updated on 12/Jan/20
$${hahaha}….{thanks}\:{sir} \\ $$
Commented by behi83417@gmail.com last updated on 12/Jan/20
$$\mathrm{dear}\:\mathrm{master}:\mathrm{mrW}!\:\mathrm{thanks}. \\ $$$$\mathrm{I}\:\mathrm{hope}\:\mathrm{and}\:\mathrm{wait}\:\mathrm{for}\:\mathrm{any}\:\mathrm{try}\:\mathrm{by}\:\mathrm{you},\:\mathrm{sir}. \\ $$
Commented by mr W last updated on 12/Jan/20
$${i}\:{don}'{t}\:{think}\:{a}\:{general}\:{solution}\:\left({formula}\right) \\ $$$${is}\:{possible}. \\ $$$${assume}\:{a}\geqslant{b}\geqslant{c},\:{we}\:{can}\:{say}: \\ $$$${if}\:{d}<\sqrt{\left({a}−{c}\right)×{min}\left({a}−{b},{b}−{c}\right)}\:\Rightarrow{no}\:{solution}. \\ $$$${if}\:{d}\geqslant\sqrt{\left({a}−{c}\right)×{min}\left({a}−{b},{b}−{c}\right)} \\ $$$${one}\:{or}\:{two}\:{solutions}\:{exist}\:{which}\:{lie} \\ $$$${in}\:{the}\:{range}\:{x}\leqslant{c}\:{or}\:{x}\geqslant{a}.\:{but}\:{a}\:{formula} \\ $$$${for}\:{the}\:{roots}\:{is}\:{not}\:{possible}. \\ $$$${as}\:{for}\:{the}\:{example}\:{a}=\mathrm{4},{b}=\mathrm{3},{c}=\mathrm{2}, \\ $$$$\sqrt{\left(\mathrm{4}−\mathrm{2}\right)×{min}\left(\mathrm{1},\mathrm{1}\right)}=\sqrt{\mathrm{2}} \\ $$$${therefore}\:{for}\:{d}=\mathrm{1}<\sqrt{\mathrm{2}}\:{there}\:{is}\:{no}\:{solution}. \\ $$$${see}\:{diagram}. \\ $$$${MJS}\:{sir}\:{has}\:{given}\:{the}\:{same}\:{statement}. \\ $$
Commented by mr W last updated on 12/Jan/20
Commented by mr W last updated on 12/Jan/20
$${curve}\:{f}\left({x}\right)\:{stands}\:{for} \\ $$$${f}\left({x}\right)=\sqrt{\left({x}−{a}\right)\left({x}−{b}\right)}+\sqrt{\left({x}−{b}\right)\left({x}−{c}\right)}+\sqrt{\left({x}−{c}\right)\left({x}−{a}\right)} \\ $$$${and} \\ $$$${d}_{{min}} =\sqrt{\left({a}−{c}\right)×{min}\left({a}−{b},{b}−{c}\right)} \\ $$$${solution}\:{for}\:{f}\left({x}\right)={d}\:{exists}\:{when} \\ $$$${d}\geqslant{d}_{{min}} . \\ $$
Commented by mr W last updated on 12/Jan/20
$${following}\:{is}\:{an}\:{example}\:{with} \\ $$$${a}=\mathrm{5},{b}=\mathrm{3},{c}=\mathrm{2}. \\ $$$${for}\:{d}=\mathrm{4}:\:{two}\:{solutions} \\ $$$${for}\:{d}=\mathrm{2}.\mathrm{5}:\:{one}\:{solution}. \\ $$
Commented by mr W last updated on 12/Jan/20
Commented by mr W last updated on 12/Jan/20
Commented by behi83417@gmail.com last updated on 12/Jan/20
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{dear}\:\mathrm{master}. \\ $$$$\mathrm{it}\:\mathrm{is}\:\mathrm{perfect}\:\mathrm{sir}. \\ $$$$\mathrm{great}\:\mathrm{solution}\:\mathrm{by}\:\mathrm{great}\:\mathrm{man}! \\ $$
Answered by MJS last updated on 12/Jan/20
$$\mathrm{1}. \\ $$$$\mathrm{let}\:{a}\leqslant{b}\leqslant{c};\:{p}\leqslant{q} \\ $$$$\left({x}−{p}\right)\left({x}−{q}\right)\geqslant\mathrm{0}\:\Rightarrow\:{x}\leqslant{p}\vee{x}\geqslant{q} \\ $$$$\Rightarrow \\ $$$$\left({x}\leqslant{a}\vee{x}\geqslant{b}\right)\wedge\left({x}\leqslant{b}\vee{x}\geqslant{c}\right)\wedge\left({x}\leqslant{a}\vee{x}\geqslant{c}\right) \\ $$$$\Rightarrow \\ $$$${x}\leqslant{a}\vee{x}\geqslant{c} \\ $$$$\Rightarrow \\ $$$$\mathrm{the}\:\mathrm{minimum}\:\mathrm{of} \\ $$$$\sqrt{\left({x}−{a}\right)\left({x}−{b}\right)}+\sqrt{\left({x}−{b}\right)\left({x}−{c}\right)}+\sqrt{\left({x}−{c}\right)\left({x}−{a}\right)} \\ $$$$\mathrm{is}\:\mathrm{either}\:\mathrm{at}\:{x}={a}\:\mathrm{or}\:{x}={c}\:\mathrm{and}\:\mathrm{thus}\:\mathrm{its}\:\mathrm{value} \\ $$$$\mathrm{is}\:\mathrm{either}\:\sqrt{\left({a}−{b}\right)\left({a}−{c}\right)}\:\mathrm{or}\:\sqrt{\left({c}−{a}\right)\left({c}−{b}\right)} \\ $$$$\mathrm{is}\:\sqrt{\left({a}−{b}\right)\left({a}−{c}\right)}\:\mathrm{if}\:{a}+{c}\geqslant\mathrm{2}{b} \\ $$$$\mathrm{or}\:\sqrt{\left({c}−{a}\right)\left({c}−{b}\right)}\:\mathrm{if}\:{a}+{c}\leqslant\mathrm{2}{b} \\ $$$$ \\ $$$$\mathrm{with}\:{a}=\mathrm{4},\:{b}=\mathrm{3},\:{c}=\mathrm{2}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{is}\:\sqrt{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{no}\:\mathrm{solution}\:\mathrm{for}\:{d}=\mathrm{1} \\ $$
Commented by behi83417@gmail.com last updated on 12/Jan/20
$$\mathrm{dear}\:\mathrm{proph}\::\mathrm{MJS}!\:\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much} \\ $$$$\mathrm{sir}.\mathrm{is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{chance}\:\mathrm{to}\:\mathrm{find}:\:\mathrm{x}\:\mathrm{in} \\ $$$$\mathrm{terms}\:\mathrm{of}\::\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d}? \\ $$