Menu Close

Solve-for-x-in-4-x-192-x-Using-lambert-function-




Question Number 6870 by Tawakalitu. last updated on 31/Jul/16
Solve for x in     4^x  = ((192)/x)    Using lambert function
Solveforxin4x=192xUsinglambertfunction
Commented by Yozzii last updated on 31/Jul/16
a^(bx+c) =(d/(fx+g))     (a,b,c,d,f,g∈R, a≠1,d≠0,f≠0,b≠0,a>0)  ⇒(fx+g)e^((bx+c)lna) =d  (f((blna)/(blna))x+g)e^(clna) e^(bxlna) =d  ((fe^(clna−((gblna)/f)) )/(blna))(bxlna+((gblna)/f))e^(bxlna+((gblna)/f)) =d  bxlna+((gblna)/f)=W{((dblna)/f)e^(((gblna)/f)−clna) }  x=(1/(blna))[W{((dblna)/f)e^(((gblna)/f)−clna) }−((gblna)/f)]  e=Euler′s constant  In your problem, b=f=1,c=g=0,d=192,a=4  ⇒x=(1/(ln4))W{192ln4}
abx+c=dfx+g(a,b,c,d,f,gR,a1,d0,f0,b0,a>0)(fx+g)e(bx+c)lna=d(fblnablnax+g)eclnaebxlna=dfeclnagblnafblna(bxlna+gblnaf)ebxlna+gblnaf=dbxlna+gblnaf=W{dblnafegblnafclna}x=1blna[W{dblnafegblnafclna}gblnaf]e=EulersconstantInyourproblem,b=f=1,c=g=0,d=192,a=4x=1ln4W{192ln4}

Leave a Reply

Your email address will not be published. Required fields are marked *