Menu Close

Solve-for-x-tan-x-tan-2x-tan-3x-0-Some-one-had-posted-this-question-and-I-had-answered-it-but-then-thread-was-deleted-I-think-that-the-question-is-not-importanceless-so-I-hav-reposted-it-




Question Number 1890 by Rasheed Soomro last updated on 21/Oct/15
Solve for x        tan x +tan 2x −tan 3x =0  Some one had posted this question and I had answered it  but then thread was deleted!  I think that the question is not importanceless , so I hav  reposted it.
Solveforxtanx+tan2xtan3x=0SomeonehadpostedthisquestionandIhadanswereditbutthenthreadwasdeleted!Ithinkthatthequestionisnotimportanceless,soIhavrepostedit.
Commented by Rasheed Soomro last updated on 22/Oct/15
Question sholdn′t be deleted/changed  in case it is answered /commented.  Because after being answered/commented it is no longer  remained your private matter.
Questionsholdntbedeleted/changedincaseitisanswered/commented.Becauseafterbeinganswered/commenteditisnolongerremainedyourprivatematter.
Commented by 123456 last updated on 21/Oct/15
all questions are importants :3
allquestionsareimportants:3
Commented by Rasheed Soomro last updated on 23/Oct/15
of course!
ofcourse!
Answered by Yozzy last updated on 22/Oct/15
One method of approach involves the use of the following trigonometric identity:                                                         tan3x=((tan2x+tanx)/(1−tan2xtanx))..............(1)  The given equation then takes the form,after factorising,                     (tanx+tan2x)(1−(1/(1−tanxtan2x)))=0  {tanxtan2x≠1}                     (tanx+tan2x)(((1−tanxtan2x−1)/(1−tanxtan2x)))=0                                      ((tanxtan2x(tanx+tan2x))/(tanxtan2x−1))=0.................(2)  For (2) to be true we have the possibility of tanx=0 or tan2x=0 or tanx+tan2x=0.  If tanx=0 we have a general solution as x=nπ , n∈Z.  If tan2x=0 we have a general solution as x=((nπ)/2), n∈Z.  If tanx+tan2x=0⇒tan2x=−tanx⇒2x=−x+nπ⇒x=((nπ)/3), n∈Z.  To check the last solution function (since x is then a function of n) observe  that from (1)                                 tanx+tan2x=tan3x(1−tanxtan2x).  Having agreed upon that tanxtan2x≠1⇒tanxtan2x−1≠0. Therefore we ought  to have tan3x=0⇒3x=nπ⇒x=((nπ)/3), n∈Z.  Hence, a possible general solution is given as                           S={x∈R, n,m,q∈Z∣x=nπ ∨ x=((mπ)/2) ∨ x=((qπ)/3)}.  However, if m is odd we that the equation is not satified since tan((mπ)/2) is undefined  for m odd so that we have the true solution set                                        S={x∈R,n,q∈Z∣x=nπ∨x=((qπ)/3)}.  If tanxtan2x=1⇒2tan^2 x=1−tan^2 x⇒tan^2 x=(1/3)⇒tanx=±(1/( (√3)))⇒x= { (((((6n+1)/6))π   n∈Z)),(((((6n−1)/6))π  n∈Z  )) :}  The above general solution incurs a solution set S^′  completely disjoint from  S since 6n±1 is odd ∀n∈Z⇒ 6 never divides 6n±1 to yield a quotient that is an  integral multiple of 1, (1/2) and (1/3). Therefore, S appears to be the complete set of real   solutions. I wonder what complex solutions exist for the equation.
Onemethodofapproachinvolvestheuseofthefollowingtrigonometricidentity:tan3x=tan2x+tanx1tan2xtanx..(1)Thegivenequationthentakestheform,afterfactorising,(tanx+tan2x)(111tanxtan2x)=0{tanxtan2x1}(tanx+tan2x)(1tanxtan2x11tanxtan2x)=0tanxtan2x(tanx+tan2x)tanxtan2x1=0..(2)For(2)tobetruewehavethepossibilityoftanx=0ortan2x=0ortanx+tan2x=0.Iftanx=0wehaveageneralsolutionasx=nπ,nZ.Iftan2x=0wehaveageneralsolutionasx=nπ2,nZ.Iftanx+tan2x=0tan2x=tanx2x=x+nπx=nπ3,nZ.Tocheckthelastsolutionfunction(sincexisthenafunctionofn)observethatfrom(1)tanx+tan2x=tan3x(1tanxtan2x).Havingagreeduponthattanxtan2x1tanxtan2x10.Thereforeweoughttohavetan3x=03x=nπx=nπ3,nZ.Hence,apossiblegeneralsolutionisgivenasS={xR,n,m,qZx=nπx=mπ2x=qπ3}.However,ifmisoddwethattheequationisnotsatifiedsincetanmπ2isundefinedformoddsothatwehavethetruesolutionsetS={xR,n,qZx=nπx=qπ3}.Iftanxtan2x=12tan2x=1tan2xtan2x=13tanx=±13x={(6n+16)πnZ(6n16)πnZTheabovegeneralsolutionincursasolutionsetScompletelydisjointfromSsince6n±1isoddnZ6neverdivides6n±1toyieldaquotientthatisanintegralmultipleof1,12and13.Therefore,Sappearstobethecompletesetofrealsolutions.Iwonderwhatcomplexsolutionsexistfortheequation.
Answered by Rasheed Soomro last updated on 22/Oct/15
Easy and Short approach  tan x +tan 2x −tan 3x =0  tan x +tan 2x −tan(2x+x) =0  tan x +tan 2x −((tan 2x +tan x)/(1−tan 2x tan x)) =0  Multiplying both sides by  1−tan 2x tan x :  tan x^(×) −tan 2x tan^2  x+tan 2x^(×)  −tan^2  2x tan x−tan 2x^(×)  −tan x^(×) =0  −tan 2x tan^2  x−tan^2  2x tan x=0  tan 2x tan^2  x+tan^2  2x tan x=0  tan 2x tan x(tan x+tan 2x)=0  tan 2x=0 ∣ tan x=0 ∣ tan x+tan 2x=0  tan x=0 ⇒x=nπ  tan 2x=0 ⇒x=((nπ)/2)  tan x+tan 2x=0⇒tan x=−tan 2x⇒tan x=tan(−2x)         ⇒x=−2x+nπ⇒x=((nπ)/3)  Solution Set for x  {nπ , ((nπ)/2) , ((nπ)/3)}  Note: In solving  tan x+tan 2x=0  I have got  help from   the above answer by Yozzy.
EasyandShortapproachtanx+tan2xtan3x=0tanx+tan2xtan(2x+x)=0tanx+tan2xtan2x+tanx1tan2xtanx=0Multiplyingbothsidesby1tan2xtanx:tanx×tan2xtan2x+tan2x×tan22xtanxtan2x×tanx×=0tan2xtan2xtan22xtanx=0tan2xtan2x+tan22xtanx=0tan2xtanx(tanx+tan2x)=0tan2x=0tanx=0tanx+tan2x=0tanx=0x=nπtan2x=0x=nπ2tanx+tan2x=0tanx=tan2xtanx=tan(2x)x=2x+nπx=nπ3SolutionSetforx{nπ,nπ2,nπ3}Note:Insolvingtanx+tan2x=0IhavegothelpfromtheaboveanswerbyYozzy.

Leave a Reply

Your email address will not be published. Required fields are marked *