Menu Close

solve-for-x-the-equation-log-x-e-2x-eln-x-e-




Question Number 68898 by Rio Michael last updated on 16/Sep/19
solve for x the equation    log_x e^(2x)  = eln x −e
solveforxtheequationlogxe2x=elnxe
Commented by kaivan.ahmadi last updated on 16/Sep/19
((2x)/(lnx))=elnx−e⇒e(lnx)^2 −elnx−2x=0  set y=lnx⇒x=e^y   ⇒ey^2 −ey−2e^y =0⇒y^2 −y=2e^(y−1)
2xlnx=elnxee(lnx)2elnx2x=0sety=lnxx=eyey2ey2ey=0y2y=2ey1
Commented by kaivan.ahmadi last updated on 16/Sep/19
maybe,we can find the answers by drow  y^2 −y and 2e^(y−1) .
maybe,wecanfindtheanswersbydrowy2yand2ey1.
Commented by Rio Michael last updated on 17/Sep/19
really that will be uneasy..thanks anyway
reallythatwillbeuneasy..thanksanyway
Commented by MJS last updated on 17/Sep/19
we can only approximate  eln x (ln x −1)−2x=0  ⇒  x≈.690331
wecanonlyapproximateelnx(lnx1)2x=0x.690331
Commented by Rio Michael last updated on 17/Sep/19
thanks so much, but how did you get that approximate   value, i mean the steps to obtain such approximate
thankssomuch,buthowdidyougetthatapproximatevalue,imeanthestepstoobtainsuchapproximate
Commented by MJS last updated on 18/Sep/19
first, plot it as a function  y=eln x (ln x −1)−2x  or calculate some values  we know x>0 (because ln x is not defined  for x≤0)  put x=(1/e) ⇒ ln x =−1 ⇒ y=2e−(2/e)>0  put x=1 ⇒ ln x =0 ⇒ y=−2<0  ⇒ (1/e)≈.367879<x<1  now try x={.4, .5, .6, .7, .8, .9}  x=.6 ⇒ y=.897...  x=.7 ⇒ y=−.0846...  ⇒ .6<x<.7 but it′s closer to .7  ⇒ try x={.69, .68, .67, ..., .61}  ⇒ .69<x<.70 but it′s closer to .69  ⇒ try x={.691, .692, ..., .699}  x=.691 ⇒ y=−.00592...  ⇒ try x={.6901, .6902, ...
first,plotitasafunctiony=elnx(lnx1)2xorcalculatesomevaluesweknowx>0(becauselnxisnotdefinedforx0)putx=1elnx=1y=2e2e>0putx=1lnx=0y=2<01e.367879<x<1nowtryx={.4,.5,.6,.7,.8,.9}x=.6y=.897x=.7y=.0846.6<x<.7butitscloserto.7tryx={.69,.68,.67,,.61}.69<x<.70butitscloserto.69tryx={.691,.692,,.699}x=.691y=.00592tryx={.6901,.6902,
Commented by Rio Michael last updated on 18/Sep/19
thank you so much
thankyousomuch

Leave a Reply

Your email address will not be published. Required fields are marked *