Menu Close

solve-for-x-the-following-a-x-3x-4-0-b-x-1-0-c-x-2-3-x-2-0-




Question Number 75932 by Rio Michael last updated on 21/Dec/19
solve for x the following  a. ∣x∣ + 3x −4 =0  b.  ∣x∣−1 = 0  c. x^2 +3∣x∣ +2 =0
$${solve}\:{for}\:{x}\:{the}\:{following} \\ $$$${a}.\:\mid{x}\mid\:+\:\mathrm{3}{x}\:−\mathrm{4}\:=\mathrm{0} \\ $$$${b}.\:\:\mid{x}\mid−\mathrm{1}\:=\:\mathrm{0} \\ $$$${c}.\:{x}^{\mathrm{2}} +\mathrm{3}\mid{x}\mid\:+\mathrm{2}\:=\mathrm{0} \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 21/Dec/19
c)  x^2  +3∣x∣+2 =0 ⇔ ∣x∣^2 +3∣x∣+2=0 ⇒t^2  +3t +2=0 whit t=∣x∣  so t must be ≥0  Δ=3^2 −4.2 =1 ⇒t_1 =((−3+1)/2) =−1  t_2 =((−3−1)/2) =−2  all values of t are <0 ⇒ no solutions..
$$\left.{c}\right)\:\:{x}^{\mathrm{2}} \:+\mathrm{3}\mid{x}\mid+\mathrm{2}\:=\mathrm{0}\:\Leftrightarrow\:\mid{x}\mid^{\mathrm{2}} +\mathrm{3}\mid{x}\mid+\mathrm{2}=\mathrm{0}\:\Rightarrow{t}^{\mathrm{2}} \:+\mathrm{3}{t}\:+\mathrm{2}=\mathrm{0}\:{whit}\:{t}=\mid{x}\mid \\ $$$${so}\:{t}\:{must}\:{be}\:\geqslant\mathrm{0}\:\:\Delta=\mathrm{3}^{\mathrm{2}} −\mathrm{4}.\mathrm{2}\:=\mathrm{1}\:\Rightarrow{t}_{\mathrm{1}} =\frac{−\mathrm{3}+\mathrm{1}}{\mathrm{2}}\:=−\mathrm{1} \\ $$$${t}_{\mathrm{2}} =\frac{−\mathrm{3}−\mathrm{1}}{\mathrm{2}}\:=−\mathrm{2}\:\:{all}\:{values}\:{of}\:{t}\:{are}\:<\mathrm{0}\:\Rightarrow\:{no}\:{solutions}.. \\ $$
Answered by benjo last updated on 21/Dec/19
Commented by Rio Michael last updated on 21/Dec/19
why sir
$${why}\:{sir} \\ $$
Commented by mr W last updated on 22/Dec/19
x^2 ≥0  ∣x∣≥0  x^2 +3∣x∣+2≥2  therefore x^2 +3∣x∣+2=0 is impossible.  i.e. x^2 +3∣x∣+2=0 has no (real)  solution.
$${x}^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\mid{x}\mid\geqslant\mathrm{0} \\ $$$${x}^{\mathrm{2}} +\mathrm{3}\mid{x}\mid+\mathrm{2}\geqslant\mathrm{2} \\ $$$${therefore}\:{x}^{\mathrm{2}} +\mathrm{3}\mid{x}\mid+\mathrm{2}=\mathrm{0}\:{is}\:{impossible}. \\ $$$${i}.{e}.\:{x}^{\mathrm{2}} +\mathrm{3}\mid{x}\mid+\mathrm{2}=\mathrm{0}\:{has}\:{no}\:\left({real}\right) \\ $$$${solution}. \\ $$
Commented by benjo last updated on 24/Dec/19
how about in complex solution sir?
$$\mathrm{how}\:\mathrm{about}\:\mathrm{in}\:\mathrm{complex}\:\mathrm{solution}\:\mathrm{sir}? \\ $$
Commented by mr W last updated on 24/Dec/19
complex solution:  let x=bi  −b^2 +3∣b∣+2=0  ∣b∣^2 −3∣b∣−2=0  ∣b∣=((3+(√(17)))/2)  ⇒x=±((3+(√(17)))/2)i
$${complex}\:{solution}: \\ $$$${let}\:{x}={bi} \\ $$$$−{b}^{\mathrm{2}} +\mathrm{3}\mid{b}\mid+\mathrm{2}=\mathrm{0} \\ $$$$\mid{b}\mid^{\mathrm{2}} −\mathrm{3}\mid{b}\mid−\mathrm{2}=\mathrm{0} \\ $$$$\mid{b}\mid=\frac{\mathrm{3}+\sqrt{\mathrm{17}}}{\mathrm{2}} \\ $$$$\Rightarrow{x}=\pm\frac{\mathrm{3}+\sqrt{\mathrm{17}}}{\mathrm{2}}{i} \\ $$
Commented by benjo last updated on 24/Dec/19
thanks you sir
$$\mathrm{thanks}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *