Menu Close

Solve-for-x-x-2-log-2-x-8-




Question Number 4399 by alib last updated on 22/Jan/16
Solve for x    x^(2 log _2  x) =8
Solveforxx2log2x=8
Commented by Rasheed Soomro last updated on 20/Jan/16
x^(2 log _2  x) =8  x^(log_2 x^2 ) =8  Let 8=x^y   log_2 8=ylog_2 x  3=y log_2 x  y=3/log_2 x  So 8=x^(3/log_2 x)   x^(log_2 x^2 ) =x^(3/log_2 x)   log_2 x^2 =3/log_2 x  (log_2 x^2 )(log_2 x)=3  2 log_2 x log_2 x=3  (log_2 x)^2 =(3/2)  log_2 x=±(√(3/2))  x=2^(±(√(1.5)))   x≈2.3371, 0.42787
x2log2x=8xlog2x2=8Let8=xylog28=ylog2x3=ylog2xy=3/log2xSo8=x3/log2xxlog2x2=x3/log2xlog2x2=3/log2x(log2x2)(log2x)=32log2xlog2x=3(log2x)2=32log2x=±32x=2±1.5x2.3371,0.42787
Commented by Yozzii last updated on 20/Jan/16
x^(log_2 x^2 ) =8  {log_2 x^2 }(lnx)=ln8  ((lnx^2 )/(ln2))=((ln8)/(lnx))  (change of base)  ((2lnx)/(ln2))=((ln8)/(lnx))  2(lnx)^2 =ln2×ln8  lnx=±(√((ln2×ln8)/2))  x=exp(±(√(0.5ln2×ln8)))≈2.3371,0.4279
xlog2x2=8{log2x2}(lnx)=ln8lnx2ln2=ln8lnx(changeofbase)2lnxln2=ln8lnx2(lnx)2=ln2×ln8lnx=±ln2×ln82x=exp(±0.5ln2×ln8)2.3371,0.4279
Answered by Rasheed Soomro last updated on 22/Jan/16
x^(2 log _2  x) =8  log_2 (x^(2log_2 x) )=log_2 8  2 log_2 x log_2 x=3  (log_2 x)^2 =3/2  log_2 x=±(√(3/2))  x=2^(±(√(1.5)))   x=2.33714 , 0.427873
x2log2x=8log2(x2log2x)=log282log2xlog2x=3(log2x)2=3/2log2x=±3/2x=2±1.5x=2.33714,0.427873

Leave a Reply

Your email address will not be published. Required fields are marked *