Menu Close

solve-for-x-y-R-1-x-2-ln-x-1-x-2-1-y-2-ln-y-1-y-2-




Question Number 66619 by mr W last updated on 17/Aug/19
solve for x,y∈R  ((√(1+x^2 ))/(ln (x+(√(1+x^2 )))))=((√(1+y^2 ))/(ln (y+(√(1+y^2 )))))
$${solve}\:{for}\:{x},{y}\in{R} \\ $$$$\frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{\mathrm{ln}\:\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)}=\frac{\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }}{\mathrm{ln}\:\left({y}+\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }\right)} \\ $$
Answered by Smail last updated on 17/Aug/19
⇔(((sinh^(−1) (x))′)/(sinh^(−1) (x)))=(((sinh^(−1) (y))′)/(sinh^(−1) (y)))  ⇒ln(sinh^(−1) (x))=ln(sinh^(−1) (y))+c  ⇔ln(sinh^(−1) (x))=ln(ksinh^(−1) (y))  sinh^(−1) (x)=ksinh^(−1) (y)  y=sinh(((sinh^(−1) (x))/k))
$$\Leftrightarrow\frac{\left({sinh}^{−\mathrm{1}} \left({x}\right)\right)'}{{sinh}^{−\mathrm{1}} \left({x}\right)}=\frac{\left({sinh}^{−\mathrm{1}} \left({y}\right)\right)'}{{sinh}^{−\mathrm{1}} \left({y}\right)} \\ $$$$\Rightarrow{ln}\left({sinh}^{−\mathrm{1}} \left({x}\right)\right)={ln}\left({sinh}^{−\mathrm{1}} \left({y}\right)\right)+{c} \\ $$$$\Leftrightarrow{ln}\left({sinh}^{−\mathrm{1}} \left({x}\right)\right)={ln}\left({ksinh}^{−\mathrm{1}} \left({y}\right)\right) \\ $$$${sinh}^{−\mathrm{1}} \left({x}\right)={ksinh}^{−\mathrm{1}} \left({y}\right) \\ $$$${y}={sinh}\left(\frac{{sinh}^{−\mathrm{1}} \left({x}\right)}{{k}}\right) \\ $$$$ \\ $$
Commented by mr W last updated on 17/Aug/19
thank you sir!
$${thank}\:{you}\:{sir}! \\ $$
Commented by mr W last updated on 18/Aug/19
but should it not be:  ((ln (x+(√(1+x^2 ))))/( (√(1+x^2 ))))=((ln (y+(√(1+y^2 ))))/( (√(1+y^2 ))))  ⇔sinh^(−1)  (x) (sinh^(−1)  (x))′=sinh^(−1)  (y) (sinh^(−1)  (y))′
$${but}\:{should}\:{it}\:{not}\:{be}: \\ $$$$\frac{\mathrm{ln}\:\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}=\frac{\mathrm{ln}\:\left({y}+\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }\right)}{\:\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }} \\ $$$$\Leftrightarrow\mathrm{sinh}^{−\mathrm{1}} \:\left({x}\right)\:\left(\mathrm{sinh}^{−\mathrm{1}} \:\left({x}\right)\right)'=\mathrm{sinh}^{−\mathrm{1}} \:\left({y}\right)\:\left(\mathrm{sinh}^{−\mathrm{1}} \:\left({y}\right)\right)' \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *