Menu Close

Solve-for-y-x-xy-y-2x-3-sin-2-y-x-




Question Number 67349 by Joel122 last updated on 26/Aug/19
Solve for y(x)  xy′ = y + 2x^3 sin^2 ((y/x))
Solvefory(x)xy=y+2x3sin2(yx)
Answered by mind is power last updated on 26/Aug/19
let u=(y/x)  ⇒u^′ =((y^′ x−y)/x^2 )=(y^′ /x^ )−(y/x^2 )  xy^, =y+2x^3 sin^2 ((y/x))⇒((y′)/x^ )−(y/x^2 )=2xsin^2 ((y/x))  ⇒u^′ =2xsin^2 (u)  ⇒(u^′ /(2sin^2 (u)))=x  ⇒∫(du/(2sin^2 (u)))=∫xdx  ⇒∫((sin^2 (u)+cos^2 (u))/(2sin^2 (u)))du=(x^2 /2)+c  ∫(1/2)(1+cot^2 (u))du=(x^2 /2)+c  ⇒−(1/2)cot(u)=(x^2 /2)+c  ⇒tg((π/2)−u)=−x^2 +c  ⇒u=(π/2)−tan^(−1) (−x^2 +c)  ⇒(y/x)=(π/2)−tan^(−1) (−x^2 +c)⇒y=x((π/2)−tan^(−1) (−x^2 +c))  ⇒(y/x)
letu=yxu=yxyx2=yxyx2xy,=y+2x3sin2(yx)yxyx2=2xsin2(yx)u=2xsin2(u)u2sin2(u)=xdu2sin2(u)=xdxsin2(u)+cos2(u)2sin2(u)du=x22+c12(1+cot2(u))du=x22+c12cot(u)=x22+ctg(π2u)=x2+cu=π2tan1(x2+c)yx=π2tan1(x2+c)y=x(π2tan1(x2+c))yx
Commented by Joel122 last updated on 26/Aug/19
thank you very much
thankyouverymuch
Commented by mind is power last updated on 26/Aug/19
y′re welcom
yrewelcom

Leave a Reply

Your email address will not be published. Required fields are marked *