Menu Close

solve-for-z-C-z-a-bi-z-a-bi-r-R-r-2-z-2-z-r-2-z-2-z-




Question Number 76397 by MJS last updated on 27/Dec/19
solve for z∈C  [z=a+bi; z^� =a−bi; r∈R]  (√(r^2 −z^2 ))=z^�   (√(r^2 +z^2 ))=z^�
$$\mathrm{solve}\:\mathrm{for}\:{z}\in\mathbb{C} \\ $$$$\left[{z}={a}+{b}\mathrm{i};\:\bar {{z}}={a}−{b}\mathrm{i};\:{r}\in\mathbb{R}\right] \\ $$$$\sqrt{{r}^{\mathrm{2}} −{z}^{\mathrm{2}} }=\bar {{z}} \\ $$$$\sqrt{{r}^{\mathrm{2}} +{z}^{\mathrm{2}} }=\bar {{z}} \\ $$
Commented by mr W last updated on 27/Dec/19
is there a solution other than  z=0 and r=0?
$${is}\:{there}\:{a}\:{solution}\:{other}\:{than} \\ $$$${z}=\mathrm{0}\:{and}\:{r}=\mathrm{0}? \\ $$
Commented by MJS last updated on 27/Dec/19
I found no other solution for the 2^(nd)  one  (√(r^2 −z^2 ))=z^�  ⇒ z=((√(2(r^2 +2s^2 )))/2)+si with r, s ∈R
$$\mathrm{I}\:\mathrm{found}\:\mathrm{no}\:\mathrm{other}\:\mathrm{solution}\:\mathrm{for}\:\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{one} \\ $$$$\sqrt{{r}^{\mathrm{2}} −{z}^{\mathrm{2}} }=\bar {{z}}\:\Rightarrow\:{z}=\frac{\sqrt{\mathrm{2}\left({r}^{\mathrm{2}} +\mathrm{2}{s}^{\mathrm{2}} \right)}}{\mathrm{2}}+{s}\mathrm{i}\:\mathrm{with}\:{r},\:{s}\:\in\mathbb{R} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *