Menu Close

solve-in-0-2pi-1-2sin3x-0-




Question Number 76439 by mathocean1 last updated on 27/Dec/19
solve in [0;2π[   1+2sin3x≤0
$$\mathrm{solve}\:\mathrm{in}\:\left[\mathrm{0};\mathrm{2}\pi\left[\:\right.\right. \\ $$$$\mathrm{1}+\mathrm{2sin3}{x}\leqslant\mathrm{0} \\ $$
Answered by john santu last updated on 27/Dec/19
sin3x=−(1/2).→x={10^o ,50^o ,130^o ,170^o ,250^o ,290^o }  therefore : 0^o ≤x≤10^o ∪50^o ≤x≤130^o   ∪170^o ≤x≤250^o ∪290^o ≤x≤360^o
$${sin}\mathrm{3}{x}=−\frac{\mathrm{1}}{\mathrm{2}}.\rightarrow{x}=\left\{\mathrm{10}^{{o}} ,\mathrm{50}^{{o}} ,\mathrm{130}^{{o}} ,\mathrm{170}^{{o}} ,\mathrm{250}^{{o}} ,\mathrm{290}^{{o}} \right\} \\ $$$${therefore}\::\:\mathrm{0}^{{o}} \leqslant{x}\leqslant\mathrm{10}^{{o}} \cup\mathrm{50}^{{o}} \leqslant{x}\leqslant\mathrm{130}^{{o}} \\ $$$$\cup\mathrm{170}^{{o}} \leqslant{x}\leqslant\mathrm{250}^{{o}} \cup\mathrm{290}^{{o}} \leqslant{x}\leqslant\mathrm{360}^{{o}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *