Menu Close

solve-inR-x-1-1-5-x-2-4x-9-1-10-2x-10-x-2-1-




Question Number 74880 by aliesam last updated on 03/Dec/19
solve inR  ((∣x+1∣))^(1/5) −((x^2 +4x−9))^(1/(10)) =(2x−10)(√(x^2 +1))
solveinRx+15x2+4x910=(2x10)x2+1
Answered by mind is power last updated on 03/Dec/19
x^2 +4x−9  x^2 +4x−9>0⇒  x∈]−∞,((−4−(√(52)))/2)]∪]((−4+(√(52)))/2),+∞[  ((∣x+1∣))^(1/5) ≥((x^2 +4x−9))^(1/(10))   ⇒x^2 +2x+1≥x^2 +4x−9  ⇒2x≤10⇒x≤5....h  let α solution  of   ((∣x+1∣))^(1/5) −((x^2 +4x−9))^(1/(10)) =(2x−10)(√(x^2 +1))  if α<5  we get by..H  ((∣α+1∣))^(1/5) −((α^2 +4α−9))^(1/(10))   >0  but (2α−10)(√(α^2 +1))<0 absurd  if α>5  ((∣α+1∣))^(1/5) −((α^2 +4α−9))^(1/(10)) <0  (2α−10)(√(α^2 +1))>0 absurd  So if ther exist solution α,α∈R−{]−∞,5[∪]5,+∞[}⇔α∈{5}  for α=5 we have  (6)^(1/5) −((36))^(1/(10)) =(2.5−10)(√(26))=0  true since 36=6^2   S={5}
x2+4x9x2+4x9>0x],4522]]4+522,+[x+15x2+4x910x2+2x+1x2+4x92x10x5.hletαsolutionofx+15x2+4x910=(2x10)x2+1ifα<5wegetby..Hα+15α2+4α910>0but(2α10)α2+1<0absurdifα>5α+15α2+4α910<0(2α10)α2+1>0absurdSoiftherexistsolutionα,αR{],5[]5,+[}α{5}forα=5wehave653610=(2.510)26=0truesince36=62S={5}

Leave a Reply

Your email address will not be published. Required fields are marked *