Menu Close

Solve-integral-of-sec-x-dx-given-that-t-tan-x-2-




Question Number 5866 by sanusihammed last updated on 02/Jun/16
Solve integral of   sec(x)dx  .  given that  t = tan((x/2))
Solveintegralofsec(x)dx.giventhatt=tan(x2)
Answered by Yozzii last updated on 02/Jun/16
Let t=tan0.5x⇒dt=0.5sec^2 0.5xdx  dx=((2dt)/(1+t^2 ))  cosx=((1−t^2 )/(1+t^2 ))⇒secx=((1+t^2 )/(1−t^2 ))  ∴∫secxdx=∫((1+t^2 )/(1−t^2 ))×(2/(1+t^2 ))dt  =∫((1/(1−t))+(1/(1+t)))dt  =ln∣1+t∣−ln∣1−t∣+C  =ln∣((1+t)/(1−t))∣+C  ∫secx dx=ln∣((1+tan0.5x)/(1−tan0.5x))∣+C
Lett=tan0.5xdt=0.5sec20.5xdxdx=2dt1+t2cosx=1t21+t2secx=1+t21t2secxdx=1+t21t2×21+t2dt=(11t+11+t)dt=ln1+tln1t+C=ln1+t1t+Csecxdx=ln1+tan0.5x1tan0.5x+C
Commented by sanusihammed last updated on 02/Jun/16
Interesting  thanks.
Interestingthanks.

Leave a Reply

Your email address will not be published. Required fields are marked *