Menu Close

Solve-it-in-pi-pi-sin-2x-cos-x-




Question Number 75502 by mathocean1 last updated on 12/Dec/19
Solve it in ]−π;π]  sin(2x)=cos(x)
Solveitin]π;π]sin(2x)=cos(x)
Commented by mathmax by abdo last updated on 12/Dec/19
sin(2x)=cosx ⇔ sin(2x)=sin((π/2)−x) ⇔2x=(π/2)−x+2kπ or  2x =(π/2)+x +2kπ ( kfrom Z) ⇔3x =(π/2) +2kπ or x=(π/2)+ 2kπ ⇔  x =(π/6) +((2kπ)/3) or x=(π/2) +2kπ  (k∈ Z)
sin(2x)=cosxsin(2x)=sin(π2x)2x=π2x+2kπor2x=π2+x+2kπ(kfromZ)3x=π2+2kπorx=π2+2kπx=π6+2kπ3orx=π2+2kπ(kZ)
Commented by mathmax by abdo last updated on 12/Dec/19
case 1  −π <(π/2)+2kπ <π ⇒−1<(1/2) +2k<1 ⇒−(3/2)<2k<(1/2) ⇒  −(3/4)<k<(1/4) ⇒−0,...<k<0,... ⇒k=0 ⇒x=(π/2)  case 2  −π<(π/6) +((2kπ)/3)<π ⇒−1<(1/6) + ((2k)/3)<1 ⇒  −(7/6)<((2k)/3)<(5/6) ⇒−(7/2)<2k<(5/2) ⇒−(7/4)<k<(5/4) ⇒−1,...<k<1,..⇒  k ∈{−1,0,1}   k=−1 ⇒x =(π/6)−((2π)/3) =((−3π)/6) =−(π/2)  k=0 ⇒x=(π/6)  k=1 ⇒x=(π/6)+((2π)/3) =((5π)/6)
case1π<π2+2kπ<π1<12+2k<132<2k<1234<k<140,<k<0,k=0x=π2case2π<π6+2kπ3<π1<16+2k3<176<2k3<5672<2k<5274<k<541,<k<1,..k{1,0,1}k=1x=π62π3=3π6=π2k=0x=π6k=1x=π6+2π3=5π6

Leave a Reply

Your email address will not be published. Required fields are marked *