Menu Close

solve-L-lim-x-0-e-x-1-1-x-x-2-




Question Number 70364 by 20190927 last updated on 03/Oct/19
solve L=lim_(x→0) ((e^x −(1/(1−x)))/x^2 )
solveL=limx0ex11xx2
Commented by kaivan.ahmadi last updated on 03/Oct/19
lim_(x→0) (((1−x)e^x −1)/(x^2 (1−x)))=lim_(x→0) ((−xe^x )/(2x−3x^2 ))=  lim_(x→0) ((−e^x −xe^x )/(2−6x))=((−1)/2)
limx0(1x)ex1x2(1x)=limx0xex2x3x2=limx0exxex26x=12
Commented by 20190927 last updated on 03/Oct/19
Thank you
Thankyou
Commented by mathmax by abdo last updated on 03/Oct/19
let f(x)=((e^x −(1/(1−x)))/x^2 ) ⇒f(x) =(((1−x)e^x −1)/(x^2 (1−x)))  we have e^x =1+x +(x^2 /2) +o(x^3 ) ⇒(1−x)e^x  =(1−x)(1+x+(x^2 /2)+o(x^3 ))  =1+x+(x^2 /2)−x−x^2 −(x^3 /2) +o(x^4 )=1−(x^2 /2)−(x^3 /2) +o(x^4 ) ⇒  f(x)∼((−(x^2 /2)−(x^3 /2))/(x^2 (1−x))) ⇒f(x) ∼  ((−(1/2)−(x/2))/(1−x))   (x→0) ⇒  lim_(x→0)    f(x) =−(1/2)
letf(x)=ex11xx2f(x)=(1x)ex1x2(1x)wehaveex=1+x+x22+o(x3)(1x)ex=(1x)(1+x+x22+o(x3))=1+x+x22xx2x32+o(x4)=1x22x32+o(x4)f(x)x22x32x2(1x)f(x)12x21x(x0)limx0f(x)=12

Leave a Reply

Your email address will not be published. Required fields are marked *