Menu Close

Solve-simultaneously-x-y-xy-3-i-x-1-y-1-4-ii-




Question Number 12023 by tawa last updated on 09/Apr/17
Solve simultaneously  x + y − (√(xy)) = 3     .......... (i)  (√(x + 1)) + (√(y + 1)) = 4     .......... (ii)
Solvesimultaneouslyx+yxy=3.(i)x+1+y+1=4.(ii)
Answered by Mr Chheang Chantria last updated on 10/Apr/17
(i). x+y−(√(xy))≥x+y−((x+y)/2)=((x+y)/2)         3             ≥ ((x+y)/2)  ⇔x+y≤6    . (√(x+1))+(√(y+1)) ≤(√(2(x+y+2)))                                  ≤(√(2(6+2))) = 4  ⇒(√(x+1))+(√(y+1))≤4                                       by (ii) the sign equal when x=y=3
(i).x+yxyx+yx+y2=x+y23x+y2x+y6.x+1+y+12(x+y+2)2(6+2)=4x+1+y+14by(ii)thesignequalwhenx=y=3
Commented by Mr Chheang Chantria last updated on 10/Apr/17
this is for student.   we have ((√x)−(√y))^2 ≥0   for x,y≥0                   x−2(√(xy))+y≥0                      x+y≥2(√(xy))         or ((x+y)/2)≥(√(xy))         or −((x+y)/2)≤−(√(xy))
thisisforstudent.wehave(xy)20forx,y0x2xy+y0x+y2xyorx+y2xyorx+y2xy
Commented by tawa last updated on 10/Apr/17
God bless you sir.
Godblessyousir.
Answered by ajfour last updated on 09/Apr/17
squaring ...(ii)  x+y+2+2(√((x+2)(y+1))) =16  3+(√(xy))+2+2(√((x+1)(y+1))) =16  2(√((x+1)(y+1))) =11−(√(xy))  squaring :  4(xy+1+x+y)=121+xy−22(√(xy))  4(xy+1+3+(√(xy)) =121+xy−22(√(xy))  3xy+26(√(xy))−105=0  if (√(xy)) =t  3t^2 +26t−105=0  t=(√(xy))=((−26+(√(676+1260)))/6)  (√(xy)) =((−26+44)/6)=3     ....(iii)  xy=9  from ....(i)  x+y=3+(√(xy))  ⇒ x+y=6   ....(iv)  (x−y)^2 =(x+y)^2 −4xy  so, (x−y)^2 =36−4(9)=0  ⇒  x=y  and as  x+y=6     x=y=3  .
squaring(ii)x+y+2+2(x+2)(y+1)=163+xy+2+2(x+1)(y+1)=162(x+1)(y+1)=11xysquaring:4(xy+1+x+y)=121+xy22xy4(xy+1+3+xy=121+xy22xy3xy+26xy105=0ifxy=t3t2+26t105=0t=xy=26+676+12606xy=26+446=3.(iii)xy=9from.(i)x+y=3+xyx+y=6.(iv)(xy)2=(x+y)24xyso,(xy)2=364(9)=0x=yandasx+y=6x=y=3.
Commented by tawa last updated on 09/Apr/17
wow. God bless you sir.
wow.Godblessyousir.
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 09/Apr/17
x+1+y+1+2(√(x+1))(√(y+1))=16  (√(xy))+5+2(√(x+1))(√(y+1))=16  2(√(x+1))(√(y+1))=11−(√(xy))  4(xy+x+y+1)=121−22(√(xy))+xy  x+y=t  4[(t−3)^2 +t+1]=121−22(t−3)+(t−3)^2   3(t−3)^2 +26(t−3)−105=0  t−3=((−26±(√(26^2 +4×3×105)))/(2×3))=((−26±44)/6)=3,−11.66  t=x+y=6⇒(√(xy))=3⇒xy=9  ⇒x=y=3   ■
x+1+y+1+2x+1y+1=16xy+5+2x+1y+1=162x+1y+1=11xy4(xy+x+y+1)=12122xy+xyx+y=t4[(t3)2+t+1]=12122(t3)+(t3)23(t3)2+26(t3)105=0t3=26±262+4×3×1052×3=26±446=3,11.66t=x+y=6xy=3xy=9x=y=3◼
Commented by tawa last updated on 09/Apr/17
God bless you sir.
Godblessyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *