Menu Close

Solve-the-d-e-d-2-y-dt-2-dy-dt-t-y-0-




Question Number 2161 by Yozzis last updated on 05/Nov/15
Solve the d.e   (d^2 y/dt^2 )(√(dy/dt))−(t/y)=0.
$${Solve}\:{the}\:{d}.{e}\: \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }\sqrt{\frac{{dy}}{{dt}}}−\frac{{t}}{{y}}=\mathrm{0}. \\ $$
Answered by prakash jain last updated on 07/Nov/15
Solving as a series expansion  y=Σ_(i=1) ^∞ a_i t^i   (dy/dt)=Σ_(i=1) ^∞ ia_i t^(i−1)   (d^2 y/dt^2 )=Σ_(i=2) ^∞ i(i−1)a_i t^(i−2)   y^2 ((d^2 y/dt^2 ))^2 ((dy/dt))=t^2   (Σ_(i=1) ^∞ a_i t^(i−1) )^2 (Σ_(i=2) ^∞ i(i−1)a_i t^(i−2) )^2 (Σ_(i=1) ^∞ ia_i t^(i−1) )=1  equating coefficients  (t^0 )    a_1 ∙2a_2 ∙a_1 =1    more work to be done.
$$\mathrm{Solving}\:\mathrm{as}\:\mathrm{a}\:\mathrm{series}\:\mathrm{expansion} \\ $$$${y}=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}{a}_{{i}} {t}^{{i}} \\ $$$$\frac{{dy}}{{dt}}=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}{ia}_{{i}} {t}^{{i}−\mathrm{1}} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }=\underset{{i}=\mathrm{2}} {\overset{\infty} {\sum}}{i}\left({i}−\mathrm{1}\right){a}_{{i}} {t}^{{i}−\mathrm{2}} \\ $$$${y}^{\mathrm{2}} \left(\frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }\right)^{\mathrm{2}} \left(\frac{{dy}}{{dt}}\right)={t}^{\mathrm{2}} \\ $$$$\left(\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}{a}_{{i}} {t}^{{i}−\mathrm{1}} \right)^{\mathrm{2}} \left(\underset{{i}=\mathrm{2}} {\overset{\infty} {\sum}}{i}\left({i}−\mathrm{1}\right){a}_{{i}} {t}^{{i}−\mathrm{2}} \right)^{\mathrm{2}} \left(\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}{ia}_{{i}} {t}^{{i}−\mathrm{1}} \right)=\mathrm{1} \\ $$$${equating}\:{coefficients} \\ $$$$\left({t}^{\mathrm{0}} \right)\:\:\:\:{a}_{\mathrm{1}} \centerdot\mathrm{2}{a}_{\mathrm{2}} \centerdot{a}_{\mathrm{1}} =\mathrm{1}\:\: \\ $$$${more}\:{work}\:{to}\:{be}\:{done}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *