Menu Close

Solve-the-d-e-x-2-dy-dx-xy-x-2-y-2-1-by-letting-y-1-x-1-v-where-v-is-a-function-of-x-




Question Number 2051 by Yozzi last updated on 01/Nov/15
Solve the d.e               x^2 (dy/dx)+xy+x^2 y^2 =1  by letting y=(1/x)+(1/v) where  v is a function of x.
Solvethed.ex2dydx+xy+x2y2=1bylettingy=1x+1vwherevisafunctionofx.
Answered by 123456 last updated on 01/Nov/15
x^2 (dy/dx)+xy+x^2 y^2 =1  y=(1/x)+(1/v)  (dy/dx)=−(1/x^2 )−(1/v^2 )∙(dv/dx)  −x^2 ((1/x^2 )+(1/v^2 )∙(dv/dx))+x((1/x)+(1/v))+x^2 ((1/x)+(1/v))^2 =1  −1−(x^2 /v^2 )∙(dv/dx)+1+(x/v)+(1+(x/v))^2 =1  −(x^2 /v^2 )∙(dv/dx)+(x/v)+1+((2x)/v)+(x^2 /v^2 )=1  (x^2 /v^2 )∙(dv/dx)=((3x)/v)+(x^2 /v^2 )  (dv/dx)=(v^2 /x^2 )(((3x)/v)+(x^2 /v^2 ))  (dv/dx)=((3v)/x)+1  continue
x2dydx+xy+x2y2=1y=1x+1vdydx=1x21v2dvdxx2(1x2+1v2dvdx)+x(1x+1v)+x2(1x+1v)2=11x2v2dvdx+1+xv+(1+xv)2=1x2v2dvdx+xv+1+2xv+x2v2=1x2v2dvdx=3xv+x2v2dvdx=v2x2(3xv+x2v2)dvdx=3vx+1continue
Commented by prakash jain last updated on 01/Nov/15
v=Σ_(i=1) ^n a_i x^i   v′=Σ_(i=1) ^n ia_i x^(i−1)   ((3v)/x)=Σ_(i=1) ^n 3a_i x^(i−1)   v′=((3v)/x)+1  equating coeffiients  a_1 =3a_1 +1⇒a_1 =−(1/2)  2a_2 =3a_2 ⇒a_2 =0  3a_3 =3a_3 ⇒a_3 =c  4a_4 =3a_4 ⇒a_4 =0 also a_5 ,...a_n =0  v=cx^3 −(x/2)
v=ni=1aixiv=ni=1iaixi13vx=ni=13aixi1v=3vx+1equatingcoeffiientsa1=3a1+1a1=122a2=3a2a2=03a3=3a3a3=c4a4=3a4a4=0alsoa5,an=0v=cx3x2

Leave a Reply

Your email address will not be published. Required fields are marked *