Question Number 5991 by sanusihammed last updated on 08/Jun/16
$${Solve}\:{the}\:{differential}\:{equation}\: \\ $$$$ \\ $$$${cos}^{\mathrm{2}} \left({x}\right)\:\frac{{dy}}{{dx}}\:+\:{y}\:=\:{tan}\left({x}\right) \\ $$
Answered by prakash jain last updated on 09/Jun/16
$$\frac{{dy}}{{dx}}+{y}\mathrm{sec}^{\mathrm{2}} {x}=\mathrm{tan}\:{x}\mathrm{sec}^{\mathrm{2}} {x} \\ $$$${equation}\:{of}\:{the}\:{form} \\ $$$${y}'+{P}\left({x}\right){y}={Q}\left({x}\right) \\ $$$${integrating}\:{factor}\:{u}\left({x}\right)={e}^{\int{P}\left({x}\right){dx}} \\ $$$$={e}^{\mathrm{tan}\:{x}} \\ $$$${y}=\frac{\int{e}^{\mathrm{tan}\:{x}} \:\mathrm{tan}\:{x}\mathrm{sec}^{\mathrm{2}} {x}\:{dx}\:+{C}}{{e}^{\mathrm{tan}\:{x}} } \\ $$$${integral}\:\int{e}^{\mathrm{tan}\:{x}} \mathrm{tan}\:{x}\mathrm{sec}^{\mathrm{2}} {x}\:{dx} \\ $$$${can}\:{be}\:{evaluated}\:{by}\:{substituting}\:\mathrm{tan}\:{x}={u} \\ $$
Commented by prakash jain last updated on 09/Jun/16
$$\mathrm{A}\:\mathrm{differential}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{form} \\ $$$${y}'+{P}\left({x}\right){y}={Q}\left({x}\right) \\ $$$$\mathrm{has}\:\mathrm{the}\:\mathrm{following}\:\mathrm{solution} \\ $$$${y}=\frac{\int{Q}\left({x}\right){e}^{\int{P}\left({x}\right){dx}} {dx}+{C}}{{e}^{\int{P}\left({x}\right){dx}} } \\ $$$${e}^{\int{P}\left({x}\right){dx}} \:\mathrm{is}\:\mathrm{called}\:\mathrm{integrating}\:\mathrm{factor}. \\ $$
Commented by prakash jain last updated on 09/Jun/16
$$\int{e}^{\mathrm{tan}\:{x}} \mathrm{tan}\:{x}\mathrm{sec}^{\mathrm{2}} {x}\:=\int{ue}^{{u}} {du}={e}^{{u}} \left({u}−\mathrm{1}\right) \\ $$$$={e}^{\mathrm{tan}\:{x}} \left(\mathrm{tan}\:{x}−\mathrm{1}\right) \\ $$$$\mathrm{Solution} \\ $$$${y}=\frac{{e}^{\mathrm{tan}\:{x}} \left(\mathrm{tan}\:{x}−\mathrm{1}\right)+{C}}{{e}^{\mathrm{tan}\:{x}} } \\ $$$$=\mathrm{tan}\:{x}−\mathrm{1}+{Ce}^{\mathrm{tan}\:{x}} \\ $$
Commented by sanusihammed last updated on 08/Jun/16
$${Please}\:{i}\:{dont}\:{get}\:{you} \\ $$$$ \\ $$
Commented by sanusihammed last updated on 09/Jun/16
$${kindly}\:{show}\:{the}\:{steps}\:.\:{thanks} \\ $$