Menu Close

solve-the-equation-m-4-7m-3-14m-2-7m-1-0-




Question Number 131605 by physicstutes last updated on 06/Feb/21
solve the equation    m^4 −7m^3 + 14m^2 −7m + 1 = 0
solvetheequationm47m3+14m27m+1=0
Answered by malwan last updated on 06/Feb/21
m^4 +(−3m^3 −4m^3 )  +(m^2 +12m^2 +m^2 )  +(−4m−3m)+1=0  ⇒(m^4 −3m^2 +m^2 )  +(−4m^3 +12m^2 −4m)  +(m^2 −3m+1)=0  ⇒m^2 (m^2 −3m+1)  −4m(m^2 −3m+1)  +(m^2 −3m+1)=0  ⇒(m^2 −3m+1)(m^2 −4m+1)=0  m^2 −3m+1=0  ⇒m=((3±(√(9−4)))/2) = ((3±(√5))/2)  or m^2 −4m+1=0  ⇒m=((4±(√(16−4)))/2) = 2±(√3)
m4+(3m34m3)+(m2+12m2+m2)+(4m3m)+1=0(m43m2+m2)+(4m3+12m24m)+(m23m+1)=0m2(m23m+1)4m(m23m+1)+(m23m+1)=0(m23m+1)(m24m+1)=0m23m+1=0m=3±942=3±52orm24m+1=0m=4±1642=2±3
Commented by physicstutes last updated on 06/Feb/21
thats awsome sir
thatsawsomesir
Commented by malwan last updated on 06/Feb/21
thanks
thanks
Answered by EDWIN88 last updated on 06/Feb/21
(1)(m^2 +km+1)(m^2 +ℓm+1)=m^4 −7m^3 +14m^2 −7m+1  ⇒m^4 +(ℓ+k)m^3 +(2+kℓ)m^2 +(k+ℓ)m+1=      m^4 −7m^3 +14m^2 −7m+1  ⇒ { ((k+ℓ=−7⇒k=−7−ℓ)),((2+kℓ=14;kℓ=12)) :}  ⇒ℓ(−7−ℓ)=12; ℓ^2 +7ℓ+12=0 → { ((ℓ=−3)),((k=−4)) :}  then ⇔ (m^2 −3m+1)(m^2 −4m+1)=0  ⇔[(m−(3/2))^2 −(5/4) ] [(m−2)^2 −3 ] = 0  ⇔ m =  { (((3/2)±((√5)/2))),((2± (√3))) :} .
(1)(m2+km+1)(m2+m+1)=m47m3+14m27m+1m4+(+k)m3+(2+k)m2+(k+)m+1=m47m3+14m27m+1{k+=7k=72+k=14;k=12(7)=12;2+7+12=0{=3k=4then(m23m+1)(m24m+1)=0[(m32)254][(m2)23]=0m={32±522±3.

Leave a Reply

Your email address will not be published. Required fields are marked *