Menu Close

Solve-the-equation-tanh-1-x-2-x-1-ln-2-show-that-the-set-1-2-4-8-under-15-multiplication-mod-15-forms-a-group-




Question Number 68676 by Rio Michael last updated on 14/Sep/19
Solve the equation  tanh^(−1) (((x−2)/(x+1))) = ln 2  show that the set {1,2,4,8}  under ×_(15)  ,multiplication mod 15  forms a group.
$${Solve}\:{the}\:{equation} \\ $$$${tanh}^{−\mathrm{1}} \left(\frac{{x}−\mathrm{2}}{{x}+\mathrm{1}}\right)\:=\:{ln}\:\mathrm{2} \\ $$$${show}\:{that}\:{the}\:{set}\:\left\{\mathrm{1},\mathrm{2},\mathrm{4},\mathrm{8}\right\}\:\:{under}\:×_{\mathrm{15}} \:,{multiplication}\:{mod}\:\mathrm{15}\:\:{forms}\:{a}\:{group}. \\ $$
Commented by MJS last updated on 14/Sep/19
tanh^(−1)  t =((ln (1+t))/2)−((ln (1−t))/2)  e^(tanh^(−1)  t) =(√((1+t)/(1−t)))  t=((x−2)/(x+1))  ⇒  (√((2x−1)/3))=2  ⇒ x=((13)/2)
$$\mathrm{tanh}^{−\mathrm{1}} \:{t}\:=\frac{\mathrm{ln}\:\left(\mathrm{1}+{t}\right)}{\mathrm{2}}−\frac{\mathrm{ln}\:\left(\mathrm{1}−{t}\right)}{\mathrm{2}} \\ $$$$\mathrm{e}^{\mathrm{tanh}^{−\mathrm{1}} \:{t}} =\sqrt{\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}} \\ $$$${t}=\frac{{x}−\mathrm{2}}{{x}+\mathrm{1}} \\ $$$$\Rightarrow \\ $$$$\sqrt{\frac{\mathrm{2}{x}−\mathrm{1}}{\mathrm{3}}}=\mathrm{2} \\ $$$$\Rightarrow\:{x}=\frac{\mathrm{13}}{\mathrm{2}} \\ $$
Commented by Rio Michael last updated on 15/Sep/19
thank you sir
$${thank}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *