Menu Close

Solve-the-equation-z-3-z-z-x-iy-z-x-iy-




Question Number 132632 by mohammad17 last updated on 15/Feb/21
Solve the equation z^3 =z_°   z=x+iy ,z_° =(x_° +iy_° )
$${Solve}\:{the}\:{equation}\:{z}^{\mathrm{3}} ={z}_{°} \\ $$$${z}={x}+{iy}\:,{z}_{°} =\left({x}_{°} +{iy}_{°} \right) \\ $$
Answered by TheSupreme last updated on 15/Feb/21
x_0 +iy_0 =ρe^(iθ)  ρ=(√(x_0 ^2 +y_0 ^2 )) tan(θ)=(y_0 /x_0 )  we have to correct phase  θ=atan((x_0 /y_0 ))+π sgn(x_0 )  z=z_0 ^(1/3) =ρ^(1/3) e^(i ((θ+2nπ)/3))   z_n =(x_0 ^2 +y_0 ^2 )^(1/6) e^(i((atan((x_0 /y_0 ))+π(2n+sgn(x_0 )))/3))  i=0,1,2
$${x}_{\mathrm{0}} +{iy}_{\mathrm{0}} =\rho{e}^{{i}\theta} \:\rho=\sqrt{{x}_{\mathrm{0}} ^{\mathrm{2}} +{y}_{\mathrm{0}} ^{\mathrm{2}} }\:{tan}\left(\theta\right)=\frac{{y}_{\mathrm{0}} }{{x}_{\mathrm{0}} } \\ $$$${we}\:{have}\:{to}\:{correct}\:{phase} \\ $$$$\theta={atan}\left(\frac{{x}_{\mathrm{0}} }{{y}_{\mathrm{0}} }\right)+\pi\:{sgn}\left({x}_{\mathrm{0}} \right) \\ $$$${z}={z}_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{3}}} =\rho^{\frac{\mathrm{1}}{\mathrm{3}}} {e}^{{i}\:\frac{\theta+\mathrm{2}{n}\pi}{\mathrm{3}}} \\ $$$${z}_{{n}} =\left({x}_{\mathrm{0}} ^{\mathrm{2}} +{y}_{\mathrm{0}} ^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{6}}} {e}^{{i}\frac{{atan}\left(\frac{{x}_{\mathrm{0}} }{{y}_{\mathrm{0}} }\right)+\pi\left(\mathrm{2}{n}+{sgn}\left({x}_{\mathrm{0}} \right)\right)}{\mathrm{3}}} \:{i}=\mathrm{0},\mathrm{1},\mathrm{2} \\ $$$$ \\ $$
Commented by mohammad17 last updated on 15/Feb/21
sir can you give me defintion of sgn please
$${sir}\:{can}\:{you}\:{give}\:{me}\:{defintion}\:{of}\:{sgn}\:{please} \\ $$
Commented by Ar Brandon last updated on 15/Feb/21
sgn(x)=sign of x
$$\mathrm{sgn}\left(\mathrm{x}\right)=\mathrm{sign}\:\mathrm{of}\:\mathrm{x} \\ $$
Commented by mr W last updated on 15/Feb/21

Leave a Reply

Your email address will not be published. Required fields are marked *