Menu Close

Solve-the-following-d-e-by-using-v-dy-dx-where-v-is-a-function-of-x-x-2-d-2-y-dx-2-2-dy-dx-x-0-




Question Number 823 by 112358 last updated on 18/Mar/15
Solve the following d.e by using  v=(dy/dx), where v is a function of x.  x^2 (d^2 y/dx^2 )−2(dy/dx)+x=0
Solvethefollowingd.ebyusingv=dydx,wherevisafunctionofx.x2d2ydx22dydx+x=0
Answered by 123456 last updated on 18/Mar/15
v=(dy/dx)⇒(dv/dx)=(d^2 y/dx^2 )  x^2 (d^2 y/dx^2 )−2(dy/dx)+x=0⇒x^2 (dv/dx)−2v+x=0  by the coment  v=−e^(−(2/x)) ∫(e^(2/x) /x)dx  (dy/dx)=−e^(−(2/x)) ∫(e^(2/x) /x)dx  y=∫−e^(−(2/x)) ∫(e^(2/x) /x)dxdx  y=−∫e^(−(2/x)) ∫(e^(2/x) /x)dxdx  Ei(u)=∫(e^u /u)du  ∫(e^(2/x) /x)dx  u=(2/x)⇔x=(2/u)  du=−((2dx)/x^2 )⇔−((xdu)/2)=(dx/x)⇔−(du/u)=(dx/x)  −∫(e^u /u)du=−Ei(u)+C_1 =−Ei((2/x))+C_1   y=∫−e^(−(2/x)) [−Ei((2/x))+C_1 ]dx  y=∫e^(−(2/x)) Ei((2/x))dx−C_1 ∫e^(−(2/x)) dx
v=dydxdvdx=d2ydx2x2d2ydx22dydx+x=0x2dvdx2v+x=0bythecomentv=e2xe2xxdxdydx=e2xe2xxdxy=e2xe2xxdxdxy=e2xe2xxdxdxEi(u)=euudue2xxdxu=2xx=2udu=2dxx2xdu2=dxxduu=dxxeuudu=Ei(u)+C1=Ei(2x)+C1y=e2x[Ei(2x)+C1]dxy=e2xEi(2x)dxC1e2xdx
Commented by 123456 last updated on 18/Mar/15
x^2 (dy/dx)−2y+x=0  y=uv,v≠0  (dy/dx)=(du/dx)v+u(dv/dx)  x^2 ((du/dx)v+u(dv/dx))−2uv+x=0  v(x^2 (du/dx)−2u)+(x^2 u(dv/dx)+x)=0  seting the red part 0  x^2 (du/dx)−2u=0  x^2 du=2udx  (du/u)=((2dx)/x^2 )  ∫(du/u)=∫((2dx)/x^2 )=2∫(dx/x^2 )  ln u=−(2/x)+A_1   u=A_2 e^(−(2/x))   and then  x^2 u(dv/dx)+x=0  x^2 udv=−xdx  dv=−(dx/(ux))  ∫dv=∫−(dx/(ux))=−∫(dx/(ux))  v=−(1/A_2 )∫(e^(2/x) /x)dx  y=uv=(A_2 e^(−(2/x)) )×(−(1/A_2 )∫(e^(2/x) /x)dx)  y=−e^(−(2/x)) ∫(e^(2/x) /x)dx
x2dydx2y+x=0y=uv,v0dydx=dudxv+udvdxx2(dudxv+udvdx)2uv+x=0v(x2dudx2u)+(x2udvdx+x)=0setingtheredpart0x2dudx2u=0x2du=2udxduu=2dxx2duu=2dxx2=2dxx2lnu=2x+A1u=A2e2xandthenx2udvdx+x=0x2udv=xdxdv=dxuxdv=dxux=dxuxv=1A2e2xxdxy=uv=(A2e2x)×(1A2e2xxdx)y=e2xe2xxdx

Leave a Reply

Your email address will not be published. Required fields are marked *