Solve-the-following-d-e-by-using-v-dy-dx-where-v-is-a-function-of-x-x-2-d-2-y-dx-2-2-dy-dx-x-0- Tinku Tara June 3, 2023 None 0 Comments FacebookTweetPin Question Number 823 by 112358 last updated on 18/Mar/15 Solvethefollowingd.ebyusingv=dydx,wherevisafunctionofx.x2d2ydx2−2dydx+x=0 Answered by 123456 last updated on 18/Mar/15 v=dydx⇒dvdx=d2ydx2x2d2ydx2−2dydx+x=0⇒x2dvdx−2v+x=0bythecomentv=−e−2x∫e2xxdxdydx=−e−2x∫e2xxdxy=∫−e−2x∫e2xxdxdxy=−∫e−2x∫e2xxdxdxEi(u)=∫euudu∫e2xxdxu=2x⇔x=2udu=−2dxx2⇔−xdu2=dxx⇔−duu=dxx−∫euudu=−Ei(u)+C1=−Ei(2x)+C1y=∫−e−2x[−Ei(2x)+C1]dxy=∫e−2xEi(2x)dx−C1∫e−2xdx Commented by 123456 last updated on 18/Mar/15 x2dydx−2y+x=0y=uv,v≠0dydx=dudxv+udvdxx2(dudxv+udvdx)−2uv+x=0v(x2dudx−2u)+(x2udvdx+x)=0setingtheredpart0x2dudx−2u=0x2du=2udxduu=2dxx2∫duu=∫2dxx2=2∫dxx2lnu=−2x+A1u=A2e−2xandthenx2udvdx+x=0x2udv=−xdxdv=−dxux∫dv=∫−dxux=−∫dxuxv=−1A2∫e2xxdxy=uv=(A2e−2x)×(−1A2∫e2xxdx)y=−e−2x∫e2xxdx Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-66356Next Next post: x-y-a-b-1-3-x-4-y-4-ax-by- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.