Menu Close

Solve-the-following-d-e-for-v-in-terms-of-s-c-kv-v-dv-ds-




Question Number 2602 by Yozzis last updated on 23/Nov/15
Solve the following d.e for v in terms of s                     c−kv=v(dv/ds).
Solvethefollowingd.eforvintermsofsckv=vdvds.
Answered by prakash jain last updated on 24/Nov/15
((vdv)/(c−kv))=ds  −(1/k)[∫ ((c−kv)/(c−kv))dv−∫(c/(c−kv))dv]=ds  −(1/k)(v+(c/k)ln (c−kv))+C=s  −(v/k)−(c/k^2 )ln (c−kv)+C=s  kv+cln (c−kv)−Ck^2 =−sk^2   ln (c−kv)=(1/c)(−kv+Ck^2 −sk^2 )  This is an implicit relation between v and s.
vdvckv=ds1k[ckvckvdvcckvdv]=ds1k(v+ckln(ckv))+C=svkck2ln(ckv)+C=skv+cln(ckv)Ck2=sk2ln(ckv)=1c(kv+Ck2sk2)Thisisanimplicitrelationbetweenvands.
Commented by Yozzi last updated on 23/Nov/15
I got up to your result but I′m   wondering how you′ll obtain explicitly  v in terms of s. Wolfram Alpha  gave an answer in terms of something  called Lambert′s W function. I  don′t know that function yet.
IgotuptoyourresultbutImwonderinghowyoullobtainexplicitlyvintermsofs.WolframAlphagaveananswerintermsofsomethingcalledLambertsWfunction.Idontknowthatfunctionyet.
Commented by prakash jain last updated on 23/Nov/15
ln (c−ky)=(1/c)(−kv+Ck^2 −sk^2 )  c−ky=e^((1/c)(−kv+Ck^2 −sk^2 ))   ky=c−(1/c)e^((1/c)(−kv+Ck^2 −sk^2 ))
ln(cky)=1c(kv+Ck2sk2)cky=e1c(kv+Ck2sk2)ky=c1ce1c(kv+Ck2sk2)
Commented by Filup last updated on 24/Nov/15
i want to learn that function
iwanttolearnthatfunction
Commented by 123456 last updated on 24/Nov/15
W lambert is a function such that  ye^y =x (or something similiar, i dont remember it exact)
Wlambertisafunctionsuchthatyey=x(orsomethingsimiliar,idontrememberitexact)
Commented by prakash jain last updated on 24/Nov/15
y=W(ye^y )  ye^y =W(ye^y )e^(W(ye^y ))   ln (c−kv)=−((kv)/c)+((Ck^2 )/c)−((sk^2 )/c)  c−kv=e^(−((kv)/c)) e^((Ck^2 −sk^2 )/c)   c−kv=e^1 e^(−1) e^(−((kv)/c))  e^((Ck^2 −sk^2 )/c)   (c−kv)=e^(1−((kv)/c))  . e^(((Ck^2 −sk^2 )/c) −1)   (c−kv)=e^((c−kv)/c)  . e^(((Ck^2 −sk^2 )/c) −1)   (c−kv)∙e^(− ((c−kv)/c))  = e^(((Ck^2 −sk^2 )/c) −1)   c[−((c−kv)/c)]∙e^(−((c−kv)/c)) =−e^(((Ck^2 −sk^2 )/c) −1)   [−((c−kv)/c)]∙e^(−((c−kv)/c)) =((−e^(((Ck^2 −sk^2 )/c) −1) )/c)  taking W function on both sides  since W(xe^x )=x  −((c−kv)/c)=W(((−e^(((Ck^2 −sk^2 )/c) −1) )/c))  −c+kv=cW(−(e^(((Ck^2 −sk^2 )/c) −1) /c))  v=(c/k)W(−(e^(((Ck^2 −sk^2 )/c) −1) /c))+(c/k)
y=W(yey)yey=W(yey)eW(yey)ln(ckv)=kvc+Ck2csk2cckv=ekvceCk2sk2cckv=e1e1ekvceCk2sk2c(ckv)=e1kvc.eCk2sk2c1(ckv)=eckvc.eCk2sk2c1(ckv)eckvc=eCk2sk2c1c[ckvc]eckvc=eCk2sk2c1[ckvc]eckvc=eCk2sk2c1ctakingWfunctiononbothsidessinceW(xex)=xckvc=W(eCk2sk2c1c)c+kv=cW(eCk2sk2c1c)v=ckW(eCk2sk2c1c)+ck
Commented by prakash jain last updated on 24/Nov/15
If f=xe^x   W(x)=f^(−1) (x)  [f^(−1) is f−inverse]
Iff=xexW(x)=f1(x)[f1isfinverse]
Commented by Yozzi last updated on 24/Nov/15
I see. Interesting!
Isee.Interesting!

Leave a Reply

Your email address will not be published. Required fields are marked *