Question Number 2602 by Yozzis last updated on 23/Nov/15

Answered by prakash jain last updated on 24/Nov/15
![((vdv)/(c−kv))=ds −(1/k)[∫ ((c−kv)/(c−kv))dv−∫(c/(c−kv))dv]=ds −(1/k)(v+(c/k)ln (c−kv))+C=s −(v/k)−(c/k^2 )ln (c−kv)+C=s kv+cln (c−kv)−Ck^2 =−sk^2 ln (c−kv)=(1/c)(−kv+Ck^2 −sk^2 ) This is an implicit relation between v and s.](https://www.tinkutara.com/question/Q2623.png)
Commented by Yozzi last updated on 23/Nov/15

Commented by prakash jain last updated on 23/Nov/15

Commented by Filup last updated on 24/Nov/15

Commented by 123456 last updated on 24/Nov/15

Commented by prakash jain last updated on 24/Nov/15
![y=W(ye^y ) ye^y =W(ye^y )e^(W(ye^y )) ln (c−kv)=−((kv)/c)+((Ck^2 )/c)−((sk^2 )/c) c−kv=e^(−((kv)/c)) e^((Ck^2 −sk^2 )/c) c−kv=e^1 e^(−1) e^(−((kv)/c)) e^((Ck^2 −sk^2 )/c) (c−kv)=e^(1−((kv)/c)) . e^(((Ck^2 −sk^2 )/c) −1) (c−kv)=e^((c−kv)/c) . e^(((Ck^2 −sk^2 )/c) −1) (c−kv)∙e^(− ((c−kv)/c)) = e^(((Ck^2 −sk^2 )/c) −1) c[−((c−kv)/c)]∙e^(−((c−kv)/c)) =−e^(((Ck^2 −sk^2 )/c) −1) [−((c−kv)/c)]∙e^(−((c−kv)/c)) =((−e^(((Ck^2 −sk^2 )/c) −1) )/c) taking W function on both sides since W(xe^x )=x −((c−kv)/c)=W(((−e^(((Ck^2 −sk^2 )/c) −1) )/c)) −c+kv=cW(−(e^(((Ck^2 −sk^2 )/c) −1) /c)) v=(c/k)W(−(e^(((Ck^2 −sk^2 )/c) −1) /c))+(c/k)](https://www.tinkutara.com/question/Q2640.png)
Commented by prakash jain last updated on 24/Nov/15
![If f=xe^x W(x)=f^(−1) (x) [f^(−1) is f−inverse]](https://www.tinkutara.com/question/Q2641.png)
Commented by Yozzi last updated on 24/Nov/15
