Menu Close

solve-the-inequality-log-3-2x-2-9x-9-lt-0-




Question Number 72628 by Rio Michael last updated on 30/Oct/19
solve the inequality     log_3 (2x^2  + 9x + 9) < 0
solvetheinequalitylog3(2x2+9x+9)<0
Commented by mathmax by abdo last updated on 30/Oct/19
⇒((ln(2x^2 +9x +9))/(ln3))<0        ⇒ln(2x^2 +9x+9)<0   (3>1 ⇒ln(3)>0)  we must have 2x^2  +9x +9>0   Δ=81−4.2.9 =81−72=9 ⇒x_1 =((−9+3)/4)=−(3/2)  x_2 =((−9−3)/4)=−3   the equation is defined on ]−∞,−3[∪]−(3/2),+∞[  (e) ⇒2x^2  +9x +9<1 ⇒2x^2  +9x +8<0  Δ=81−4.2.8 =81−64 =17 ⇒t_1 =((−9+(√(17)))/4) and t_2 =((−9−(√(17)))/4)  t_1 −(−3) =((−9+(√(27)))/4) +3 >0 ⇒t_1 >−3  t_1 −(−(3/2))=((−9+(√(27)))/4)+(3/2) =((−9+(√(27))+6 =(√(27))−3)/4)>0 ⇒t_1 >−(3/2)  its clear thst t_2 <−3  x                                   −∞          t_2                −3             −(3/2)          t_1           +∞  x^2 +9x+8                               +              −               −                 −            +    the set of so<ution is   ]((−9−(√(17)))/4),−3[[∪]−(3/2),((−9+(√(17)))/4)[
ln(2x2+9x+9)ln3<0ln(2x2+9x+9)<0(3>1ln(3)>0)wemusthave2x2+9x+9>0Δ=814.2.9=8172=9x1=9+34=32x2=934=3theequationisdefinedon],3[]32,+[(e)2x2+9x+9<12x2+9x+8<0Δ=814.2.8=8164=17t1=9+174andt2=9174t1(3)=9+274+3>0t1>3t1(32)=9+274+32=9+27+6=2734>0t1>32itsclearthstt2<3xt2332t1+x2+9x+8++thesetofso<utionis]9174,3[[]32,9+174[
Commented by Rio Michael last updated on 31/Oct/19
thanks bt you didnt solve for   2x^2 +9x + 9 < 3^2
thanksbtyoudidntsolvefor2x2+9x+9<32

Leave a Reply

Your email address will not be published. Required fields are marked *