Question Number 75435 by Crabby89p13 last updated on 11/Dec/19
$${solve}\:{the}\:{integral}\:{with}\:{Residue}\:{theorem}. \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\frac{\mathrm{3}\:{d}\theta}{\mathrm{9}\:+\mathrm{sin}^{\mathrm{2}} \theta} \\ $$
Commented by mathmax by abdo last updated on 11/Dec/19
$${I}\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{\mathrm{3}{d}\theta}{\mathrm{9}+{sin}^{\mathrm{2}} \theta}\:\Rightarrow{I}\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{\mathrm{3}{d}\theta}{\mathrm{9}+\frac{\mathrm{1}−{cos}\left(\mathrm{2}\theta\right)}{\mathrm{2}}}\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{\mathrm{6}{d}\theta}{\mathrm{18}+\mathrm{1}−{cos}\left(\mathrm{2}\theta\right)} \\ $$$$=_{\mathrm{2}\theta\:={t}} \:\:\:\:\int_{\mathrm{0}} ^{\mathrm{4}\pi} \:\:\:\frac{\mathrm{6}}{\mathrm{19}−{cost}}\frac{{dt}}{\mathrm{2}}\:=\mathrm{3}\:\int_{\mathrm{0}} ^{\mathrm{4}\pi} \:\:\frac{{dt}}{\mathrm{19}−{cost}} \\ $$$$=\mathrm{3}\left\{\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{{dt}}{\mathrm{19}−{cost}}\:+\int_{\mathrm{2}\pi} ^{\mathrm{4}\pi} \:\frac{{dt}}{\mathrm{19}−{cost}}\right\}\:{but} \\ $$$$\int_{\mathrm{2}\pi} ^{\mathrm{4}\pi} \:\frac{{dt}}{\mathrm{19}−{cost}}\:=_{{t}=\mathrm{2}\pi\:+{u}} \:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{{du}}{\mathrm{19}−{cosu}}\:\Rightarrow{I}\:=\mathrm{6}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{{dt}}{\mathrm{19}−{cost}} \\ $$$${we}\:{have}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{{dt}}{\mathrm{19}−{cost}}\:=_{{e}^{{it}} ={z}} \:\:\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{\mathrm{1}}{\mathrm{19}−\frac{{z}+{z}^{−\mathrm{1}} }{\mathrm{2}}}\frac{{dz}}{{iz}} \\ $$$$=\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\frac{\mathrm{2}{dz}}{{iz}\left\{\mathrm{38}−{z}−{z}^{−\mathrm{1}} \right\}}\:=\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{−\mathrm{2}{idz}}{\mathrm{38}{z}−{z}^{\mathrm{2}} −\mathrm{1}} \\ $$$$=\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\:\frac{\mathrm{2}{idz}}{{z}^{\mathrm{2}} −\mathrm{38}{z}\:+\mathrm{1}}\:\:{let}\:{W}\left({z}\right)=\frac{\mathrm{2}{i}}{{z}^{\mathrm{2}} −\mathrm{38}{z}\:+\mathrm{1}}\:\:{poles}\:{of}\:{W}? \\ $$$${z}^{\mathrm{2}} −\mathrm{38}{z}\:+\mathrm{1}=\mathrm{0}\rightarrow\Delta^{'} =\mathrm{19}^{\mathrm{2}} −\mathrm{1}\:=\mathrm{360} \\ $$$${z}_{\mathrm{1}} =\mathrm{19}+\mathrm{6}\sqrt{\mathrm{10}}\:\:\:\:{and}\:{z}_{\mathrm{2}} =\mathrm{19}−\mathrm{6}\sqrt{\mathrm{10}} \\ $$$$\mid{z}_{\mathrm{1}} \mid−\mathrm{1}\:=\mathrm{18}+\mathrm{6}\sqrt{\mathrm{10}}>\mathrm{0}\:\:\:\:\left({z}_{\mathrm{1}} {is}\:{out}\:{of}\:{circle}\right) \\ $$$$\mid{z}_{\mathrm{2}} \mid−\mathrm{1}\:=\mathrm{18}−\mathrm{6}\sqrt{\mathrm{10}}\:\:<\mathrm{0}\:\:\:\Rightarrow \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} {W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left({W},{z}_{\mathrm{2}} \right)\:=\mathrm{2}{i}\pi×\frac{\mathrm{2}{i}}{\left({z}_{\mathrm{2}} −{z}_{\mathrm{1}} \right)} \\ $$$$=\frac{−\mathrm{4}\pi}{−\mathrm{12}\sqrt{\mathrm{10}}}\:=\frac{\pi}{\mathrm{3}\sqrt{\mathrm{10}}}\:\Rightarrow\:{I}\:=\mathrm{6}×\frac{\pi}{\mathrm{3}\sqrt{\mathrm{10}}}\:=\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{10}}} \\ $$$$ \\ $$
Commented by Crabby89p13 last updated on 11/Dec/19
$${why}\:{not}\:{used}\:{residue}\:{formula}\:{for}\:{sin}\theta? \\ $$$$\frac{{z}−{z}^{−\mathrm{1}} }{\mathrm{2}{j}} \\ $$
Commented by mathmax by abdo last updated on 11/Dec/19
$${we}\:{use}\:{liearisation}\:{to}\:{decrease}\:{the}\:{degre}. \\ $$
Commented by Crabby89p13 last updated on 12/Dec/19
$${oh}\:{i}\:{c}..{thanks} \\ $$