Menu Close

solve-the-integral-with-Residue-theorem-0-2pi-3-d-9-sin-2-




Question Number 75435 by Crabby89p13 last updated on 11/Dec/19
solve the integral with Residue theorem.  ∫_0 ^(2π) ((3 dθ)/(9 +sin^2 θ))
solvetheintegralwithResiduetheorem.2π03dθ9+sin2θ
Commented by mathmax by abdo last updated on 11/Dec/19
I =∫_0 ^(2π)  ((3dθ)/(9+sin^2 θ)) ⇒I =∫_0 ^(2π)  ((3dθ)/(9+((1−cos(2θ))/2))) =∫_0 ^(2π)  ((6dθ)/(18+1−cos(2θ)))  =_(2θ =t)     ∫_0 ^(4π)    (6/(19−cost))(dt/2) =3 ∫_0 ^(4π)   (dt/(19−cost))  =3{ ∫_0 ^(2π)  (dt/(19−cost)) +∫_(2π) ^(4π)  (dt/(19−cost))} but  ∫_(2π) ^(4π)  (dt/(19−cost)) =_(t=2π +u)   ∫_0 ^(2π)  (du/(19−cosu)) ⇒I =6 ∫_0 ^(2π)  (dt/(19−cost))  we have ∫_0 ^(2π)  (dt/(19−cost)) =_(e^(it) =z)    ∫_(∣z∣=1)    (1/(19−((z+z^(−1) )/2)))(dz/(iz))  =∫_(∣z∣=1)     ((2dz)/(iz{38−z−z^(−1) })) =∫_(∣z∣=1)    ((−2idz)/(38z−z^2 −1))  =∫_(∣z∣=1)      ((2idz)/(z^2 −38z +1))  let W(z)=((2i)/(z^2 −38z +1))  poles of W?  z^2 −38z +1=0→Δ^′ =19^2 −1 =360  z_1 =19+6(√(10))    and z_2 =19−6(√(10))  ∣z_1 ∣−1 =18+6(√(10))>0    (z_1 is out of circle)  ∣z_2 ∣−1 =18−6(√(10))  <0   ⇒  ∫_(∣z∣=1) W(z)dz =2iπ Res(W,z_2 ) =2iπ×((2i)/((z_2 −z_1 )))  =((−4π)/(−12(√(10)))) =(π/(3(√(10)))) ⇒ I =6×(π/(3(√(10)))) =((2π)/( (√(10))))
I=02π3dθ9+sin2θI=02π3dθ9+1cos(2θ)2=02π6dθ18+1cos(2θ)=2θ=t04π619costdt2=304πdt19cost=3{02πdt19cost+2π4πdt19cost}but2π4πdt19cost=t=2π+u02πdu19cosuI=602πdt19costwehave02πdt19cost=eit=zz∣=1119z+z12dziz=z∣=12dziz{38zz1}=z∣=12idz38zz21=z∣=12idzz238z+1letW(z)=2iz238z+1polesofW?z238z+1=0Δ=1921=360z1=19+610andz2=19610z11=18+610>0(z1isoutofcircle)z21=18610<0z∣=1W(z)dz=2iπRes(W,z2)=2iπ×2i(z2z1)=4π1210=π310I=6×π310=2π10
Commented by Crabby89p13 last updated on 11/Dec/19
why not used residue formula for sinθ?  ((z−z^(−1) )/(2j))
whynotusedresidueformulaforsinθ?zz12j
Commented by mathmax by abdo last updated on 11/Dec/19
we use liearisation to decrease the degre.
weuseliearisationtodecreasethedegre.
Commented by Crabby89p13 last updated on 12/Dec/19
oh i c..thanks
ohic..thanks

Leave a Reply

Your email address will not be published. Required fields are marked *