Menu Close

solve-the-simultaneous-equations-3x-y-9-x-2-xy-4-




Question Number 66755 by John Kaloki Musau last updated on 19/Aug/19
solve the simultaneous equations:  3x-y=9  x^2 -xy=4
solvethesimultaneousequations:3xโˆ’y=9x2โˆ’xy=4
Answered by $@ty@m123 last updated on 20/Aug/19
x^2 โˆ’x(3xโˆ’9)=4  x^2 โˆ’3x^2 +9x=4  2x^2 โˆ’9x+4=0  x=((9ยฑ(โˆš(81โˆ’32)))/4)=((9ยฑ7)/4)=4,(1/2)  y=3,โˆ’7(1/2)
x2โˆ’x(3xโˆ’9)=4x2โˆ’3x2+9x=42x2โˆ’9x+4=0x=9ยฑ81โˆ’324=9ยฑ74=4,12y=3,โˆ’712
Answered by John Kaloki Musau last updated on 21/Aug/19
y=3xโˆ’9  x^2 โˆ’3x^2 +9xโˆ’4=0  2x^2 โˆ’8xโˆ’x+4=0  (2xโˆ’1)(xโˆ’4)=0  x=(1/2),4  x=3+(1/3)y  9+2y+(1/9)y^2 โˆ’3yโˆ’(1/3)y^2 โˆ’4=0  (2/9)y^2 +yโˆ’5=0  (yโˆ’3)(2y+15)=0  y=3,โˆ’7(1/2)
y=3xโˆ’9x2โˆ’3x2+9xโˆ’4=02x2โˆ’8xโˆ’x+4=0(2xโˆ’1)(xโˆ’4)=0x=12,4x=3+13y9+2y+19y2โˆ’3yโˆ’13y2โˆ’4=029y2+yโˆ’5=0(yโˆ’3)(2y+15)=0y=3,โˆ’712
Answered by Kunal12588 last updated on 20/Aug/19
 determinant ((3,1),(y,x))=9,  determinant ((x,x),(y,x))=4  โ‡’x determinant ((1,1),(y,x))=4  โ‡’x determinant ((3,1),(y,x))โˆ’x determinant ((2,0),(y,x))=4  โ‡’9xโˆ’2x^2 =4  โ‡’2x^2 โˆ’9x+4=0  โ‡’x=((9ยฑ(โˆš(81โˆ’32)))/4)=((9ยฑ7)/4)=4,(1/2)  putting in one of the eq^n   y=12โˆ’9=3 and y=(3/2)โˆ’9=โˆ’((15)/2)=โˆ’7(1/2)   ((x),(y) )= ((4,(       (1/2))),(3,(โˆ’7(1/2))) )
|31yx|=9,|xxyx|=4โ‡’x|11yx|=4โ‡’x|31yx|โˆ’x|20yx|=4โ‡’9xโˆ’2x2=4โ‡’2x2โˆ’9x+4=0โ‡’x=9ยฑ81โˆ’324=9ยฑ74=4,12puttinginoneoftheeqny=12โˆ’9=3andy=32โˆ’9=โˆ’152=โˆ’712(xy)=(4123โˆ’712)
Answered by Mr Jor last updated on 24/Aug/19
y=3xโˆ’9  x^2 โˆ’3x^2 +9x=4  2x^2 โˆ’9x+4=0  (2xโˆ’1)(xโˆ’4)=0  x=(1/2),4  x=3+(1/3)  9+2y+(1/9)y^2 โˆ’3yโˆ’(1/3)y^2 โˆ’4=0  (2/9)y^2 +yโˆ’5=0  (y+3)(2y+15)=0  y=3,โˆ’7(1/2)
y=3xโˆ’9x2โˆ’3x2+9x=42x2โˆ’9x+4=0(2xโˆ’1)(xโˆ’4)=0x=12,4x=3+139+2y+19y2โˆ’3yโˆ’13y2โˆ’4=029y2+yโˆ’5=0(y+3)(2y+15)=0y=3,โˆ’712

Leave a Reply

Your email address will not be published. Required fields are marked *