Menu Close

solve-the-system-of-linear-congruences-x-2-mod-3-x-4-mod-5-x-7-mod-9-x-11-mod-13-using-the-Brute-force-method-




Question Number 71838 by Rio Michael last updated on 20/Oct/19
solve the system of linear congruences    x ≡ 2 (mod 3)  x ≡ 4(mod 5)  x ≡ 7 (mod 9)  x≡ 11( mod 13)  using the Brute force method
solvethesystemoflinearcongruencesx2(mod3)x4(mod5)x7(mod9)x11(mod13)usingtheBruteforcemethod
Commented by mind is power last updated on 20/Oct/19
⇔  x≡4(5)  x≡7(9)  x≡11(13)  x≡4(5),x≡7(9)⇔x≡34  (45)  our system⇔ { ((x≡34(45))),((x≡11(13))) :}⇔x≡ 349(585)  solution x≡349(585)
x4(5)x7(9)x11(13)x4(5),x7(9)x34(45)oursystem{x34(45)x11(13)x349(585)solutionx349(585)
Commented by mr W last updated on 21/Oct/19
x ≡ 2 (mod 3) and   x ≡ 7 (mod 9) are contradictory!  x=9k+7=3(3k+2)+1=3m+1≠3m+2
x2(mod3)andx7(mod9)arecontradictory!x=9k+7=3(3k+2)+1=3m+13m+2
Commented by mind is power last updated on 21/Oct/19
yeah
yeah
Answered by mr W last updated on 21/Oct/19
x=13a+11=9b+7  9b−13a=4  ⇒b=13c−1, a=9c+1  x=9(13c−1)+7=117c−2=5d+4  117c−5d=6  ⇒d=117e+69, c=5e+3  x=5(117e+69)+4=585e+349=^(!) 3f+2  3(f−195e)=347 ⇒impossible  x ≡ 2 (mod 3) is contradiction!    solution is x=585n+349
x=13a+11=9b+79b13a=4b=13c1,a=9c+1x=9(13c1)+7=117c2=5d+4117c5d=6d=117e+69,c=5e+3x=5(117e+69)+4=585e+349=!3f+23(f195e)=347impossiblex2(mod3)iscontradiction!solutionisx=585n+349
Commented by Rio Michael last updated on 21/Oct/19
thank you so much sir
thankyousomuchsir

Leave a Reply

Your email address will not be published. Required fields are marked *