Menu Close

solve-the-value-of-x-5logx-x-4-




Question Number 9875 by j.masanja06@gmail.com last updated on 11/Jan/17
solve the value of x.  5logx=(x/4)
$$\mathrm{solve}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}. \\ $$$$\mathrm{5logx}=\frac{\mathrm{x}}{\mathrm{4}} \\ $$
Answered by mrW1 last updated on 12/Jan/17
5log x=(x/4)  log x=(x/(20))  ((ln x)/(ln 10))=(x/(20))  ln x=((ln 10)/(20))x  with a=−((ln 10)/(20))≈−0.115129  ln x=−ax  x=e^(−ax) =(1/e^(ax) )  xe^(ax) =1  (ax)e^(ax) =a  ⇒ax=W(a)  with W=Lambert W function  x=((W(a))/a)=((W(−((ln 10)/(20))))/(−((ln 10)/(20))))≈((W(−0.115129))/(−0.115129))  ≈((−0.13128)/(−0.115129))≈1.140286  or  ≈((−3.3794)/(−0.115128))≈29.35316
$$\mathrm{5log}\:{x}=\frac{{x}}{\mathrm{4}} \\ $$$$\mathrm{log}\:{x}=\frac{{x}}{\mathrm{20}} \\ $$$$\frac{\mathrm{ln}\:{x}}{\mathrm{ln}\:\mathrm{10}}=\frac{{x}}{\mathrm{20}} \\ $$$$\mathrm{ln}\:{x}=\frac{\mathrm{ln}\:\mathrm{10}}{\mathrm{20}}{x} \\ $$$${with}\:{a}=−\frac{\mathrm{ln}\:\mathrm{10}}{\mathrm{20}}\approx−\mathrm{0}.\mathrm{115129} \\ $$$$\mathrm{ln}\:{x}=−{ax} \\ $$$${x}={e}^{−{ax}} =\frac{\mathrm{1}}{{e}^{{ax}} } \\ $$$${xe}^{{ax}} =\mathrm{1} \\ $$$$\left({ax}\right){e}^{{ax}} ={a} \\ $$$$\Rightarrow{ax}={W}\left({a}\right) \\ $$$${with}\:{W}={Lambert}\:{W}\:{function} \\ $$$${x}=\frac{{W}\left({a}\right)}{{a}}=\frac{{W}\left(−\frac{\mathrm{ln}\:\mathrm{10}}{\mathrm{20}}\right)}{−\frac{\mathrm{ln}\:\mathrm{10}}{\mathrm{20}}}\approx\frac{{W}\left(−\mathrm{0}.\mathrm{115129}\right)}{−\mathrm{0}.\mathrm{115129}} \\ $$$$\approx\frac{−\mathrm{0}.\mathrm{13128}}{−\mathrm{0}.\mathrm{115129}}\approx\mathrm{1}.\mathrm{140286} \\ $$$${or} \\ $$$$\approx\frac{−\mathrm{3}.\mathrm{3794}}{−\mathrm{0}.\mathrm{115128}}\approx\mathrm{29}.\mathrm{35316} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *