Menu Close

solve-with-explanation-lim-x-0-x-sinx-where-represents-greatest-integer-




Question Number 74870 by vishalbhardwaj last updated on 02/Dec/19
solve with explanation  lim_(x→0^− ) [(x/(sinx))], where [  ] represents greatest integer
solvewithexplanationlimx0[xsinx],where[]representsgreatestinteger
Commented by mathmax by abdo last updated on 02/Dec/19
we have sinx =Σ_(n=0) ^∞  (((−1)^n x^(2n+1) )/((2n+1)!))  with radius R=+∞  sinx =x−(x^3 /(3!)) +(x^5 /(5!))−.... ⇒  x−(x^3 /6) ≤sinx ≤x (we can take 0≤x≤(π/2))  1−(x^2 /6)≤((sinx)/x) ≤1 ⇒[1−(x^2 /6)] ≤[((sinx)/x)]≤1 ⇒1+[−(x^2 /2)]≤[((sinx)/x)]≤1  ⇒lim_(x→0)    [((sinx)/x)] =1
wehavesinx=n=0(1)nx2n+1(2n+1)!withradiusR=+sinx=xx33!+x55!.xx36sinxx(wecantake0xπ2)1x26sinxx1[1x26][sinxx]11+[x22][sinxx]1limx0[sinxx]=1
Answered by mind is power last updated on 02/Dec/19
 (x/(sin(x)))>0 whe x∈]−(π/2),0[        [(x/(sin(x)))]   ≤(x/(sin(x)))...(√E)  x<sin(x),   for all x∈]−(π/2),0[  proof  cos(t)≤1  f(x)=x−sin(x)⇒f′(x)=1−cos(x)≥0  f increase  f(0)=0⇒    x−sin(x)<0 ∀x∈[−(π/2),0[  ⇒x<sin(x)  ⇒(x/(sin(x)))≥1   ,  ∴sin(x)≤0∴  ⇒[(x/(sin(x)))]≥1  ⇒E⇔1≤[(x/(sin(x)))]≤(x/(sin(x)))  lim_(x→0) (x/(sin(x)))=lim_(x→0) (1/(cos(x)))=1  hopitaks Rulls  ⇒lim_(x→0)   [(x/(sin(x)))]=1
xsin(x)>0whex]π2,0[[xsin(x)]xsin(x)Ex<sin(x),forallx]π2,0[proofcos(t)1f(x)=xsin(x)f(x)=1cos(x)0fincreasef(0)=0xsin(x)<0x[π2,0[x<sin(x)xsin(x)1,sin(x)0[xsin(x)]1E1[xsin(x)]xsin(x)limx0xsin(x)=limx01cos(x)=1hopitaksRullslimx0[xsin(x)]=1

Leave a Reply

Your email address will not be published. Required fields are marked *