Menu Close

Solve-x-4-x-3-2ax-2-ax-a-2-0-a-R-




Question Number 70399 by Henri Boucatchou last updated on 04/Oct/19
Solve  x^4  + x^3  −2ax^2  −ax + a^2 = 0,  a ∈ R
Solvex4+x32ax2ax+a2=0,aR
Commented by Prithwish sen last updated on 04/Oct/19
x^4 −2ax^2 +a^2 +x^3 −ax =0  (x^2 −a)^2 +x(x^2 −a) =0  (x^2 −a)(x^2 +x−a)=0  ⇒x=±(√)a and x = ((−1±(√(1+4a)))/2)  I have not checked the answer.Please check it.
x42ax2+a2+x3ax=0(x2a)2+x(x2a)=0(x2a)(x2+xa)=0x=±aandx=1±1+4a2Ihavenotcheckedtheanswer.Pleasecheckit.
Commented by Prithwish sen last updated on 04/Oct/19
Thank you very much Sir. I correct it.
ThankyouverymuchSir.Icorrectit.
Commented by MJS last updated on 04/Oct/19
you forgot the “(√(  ))”
youforgotthe
Answered by MJS last updated on 04/Oct/19
trying factors of a^2   x∈±{a^2 , a, (√a)}  ⇒ x=±(√a)  ⇒  x^4 +x^3 −2ax^2 −ax+a^2 =  =(x−(√a))(x+(√a))(x^2 +x−a)=  =(x−(√a))(x+(√a))(x+(1/2)−((√(4a+1))/2))(x+(1/2)+((√(4a+1))/2))  ⇒ x=±(√a)∨x=−(1/2)±((√(4a+1))/2)  ⇒  { ((4 real solutions for 0≤a)),((2 real and 2 imaginary solutions for −(1/4)≤a<0)),((2 conjugated complex and 2 imaginary solutions for a<−(1/4))) :}
tryingfactorsofa2x±{a2,a,a}x=±ax4+x32ax2ax+a2==(xa)(x+a)(x2+xa)==(xa)(x+a)(x+124a+12)(x+12+4a+12)x=±ax=12±4a+12{4realsolutionsfor0a2realand2imaginarysolutionsfor14a<02conjugatedcomplexand2imaginarysolutionsfora<14

Leave a Reply

Your email address will not be published. Required fields are marked *