Menu Close

Solve-z-4-16-




Question Number 12442 by tawa last updated on 22/Apr/17
Solve:   z^4  = − 16
Solve:z4=16
Answered by ajfour last updated on 22/Apr/17
z^4 =2^4 e^(i(π+2kπ))   z=2e^(i((π/4)+((2kπ)/4) ))       ∀ k=0,1,−1,−2  so z_1 =2[cos (π/4)+isin (π/4)]  z_2 =2[cos (3π/4)+isin (3π/4)]  z_3 =2[cos (−π/4)+isin (−π/4)]  z_4 =2[cos (−3π/4)+isin (−3π/4)]  to summarize  z=(√2)(±1±i) .
z4=24ei(π+2kπ)z=2ei(π4+2kπ4)k=0,1,1,2soz1=2[cos(π/4)+isin(π/4)]z2=2[cos(3π/4)+isin(3π/4)]z3=2[cos(π/4)+isin(π/4)]z4=2[cos(3π/4)+isin(3π/4)]tosummarizez=2(±1±i).
Commented by tawa last updated on 22/Apr/17
I really appreciate sir. God bless you.
Ireallyappreciatesir.Godblessyou.
Answered by mrW1 last updated on 23/Apr/17
let z=r(cos θ+isin θ)  z^4 =r^4 (cos 4θ+isin 4θ)=−16  r^4 =16⇒r=2  sin 4θ=0  cos 4θ=−1  ⇒4θ=(2n−1)π  ⇒θ=n(π/2)−(π/4)  cos θ=±((√2)/2)  sin θ=±((√2)/2)  ⇒z=2(±((√2)/2)±i((√2)/2))=(√2)(±1±1i)
letz=r(cosθ+isinθ)z4=r4(cos4θ+isin4θ)=16r4=16r=2sin4θ=0cos4θ=14θ=(2n1)πθ=nπ2π4cosθ=±22sinθ=±22z=2(±22±i22)=2(±1±1i)
Commented by tawa last updated on 23/Apr/17
I appreciate sir. God bless you sir.
Iappreciatesir.Godblessyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *