Menu Close

solved-the-general-quintic-despite-whatever-proof-that-it-cant-be-solved-in-a-simple-way-




Question Number 66302 by ajfour last updated on 12/Aug/19
solved the general quintic,  despite whatever proof that it  cant be solved in a simple way!
$${solved}\:{the}\:{general}\:{quintic}, \\ $$$${despite}\:{whatever}\:{proof}\:{that}\:{it} \\ $$$${cant}\:{be}\:{solved}\:{in}\:{a}\:{simple}\:{way}! \\ $$
Commented by mr W last updated on 12/Aug/19
i knew you′ll tell us the good news.  thanks sir!
$${i}\:{knew}\:{you}'{ll}\:{tell}\:{us}\:{the}\:{good}\:{news}. \\ $$$${thanks}\:{sir}! \\ $$
Commented by ajfour last updated on 12/Aug/19
i haven′t verified it yet, but i  think the method is too lengthy  but plausible!  Sir consider   t^5 +at^3 +bt^2 +ct+d=0  can one root be independent of  the constant term d ?
$${i}\:{haven}'{t}\:{verified}\:{it}\:{yet},\:{but}\:{i} \\ $$$${think}\:{the}\:{method}\:{is}\:{too}\:{lengthy} \\ $$$${but}\:{plausible}! \\ $$$${Sir}\:{consider} \\ $$$$\:{t}^{\mathrm{5}} +{at}^{\mathrm{3}} +{bt}^{\mathrm{2}} +{ct}+{d}=\mathrm{0} \\ $$$${can}\:{one}\:{root}\:{be}\:{independent}\:{of} \\ $$$${the}\:{constant}\:{term}\:{d}\:? \\ $$
Commented by MJS last updated on 12/Aug/19
you know that  Π_(i=1) ^n (x−α_i )  leads to the constant term  (−1)^n Π_(i=1) ^n α_i   ⇒ the constant factor depends on the roots  and vice versa. this is obvious, or...?
$$\mathrm{you}\:\mathrm{know}\:\mathrm{that} \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\prod}}\left({x}−\alpha_{{i}} \right) \\ $$$$\mathrm{leads}\:\mathrm{to}\:\mathrm{the}\:\mathrm{constant}\:\mathrm{term} \\ $$$$\left(−\mathrm{1}\right)^{{n}} \underset{{i}=\mathrm{1}} {\overset{{n}} {\prod}}\alpha_{{i}} \\ $$$$\Rightarrow\:\mathrm{the}\:\mathrm{constant}\:\mathrm{factor}\:\mathrm{depends}\:\mathrm{on}\:\mathrm{the}\:\mathrm{roots} \\ $$$$\mathrm{and}\:\mathrm{vice}\:\mathrm{versa}.\:\mathrm{this}\:\mathrm{is}\:\mathrm{obvious},\:\mathrm{or}…? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *